425 research outputs found
Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa.
BACKGROUND: Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are highly effective tools for controlling malaria transmission in Africa because the most important vectors, from the Anopheles gambiae complex and the A. funestus group, usually prefer biting humans indoors at night. METHODS: Matched surveys of mosquito and human behaviour from six rural sites in Burkina Faso, Tanzania, Zambia, and Kenya, with ITN use ranging from 0.2% to 82.5%, were used to calculate the proportion of human exposure to An. gambiae sensu lato and An. funestus s.l. that occurs indoors (Ď€i), as an indicator of the upper limit of personal protection that indoor vector control measures can provide. This quantity was also estimated through use of a simplified binary analysis (Ď€(i)(B)) so that the proportions of mosquitoes caught indoors (Pi), and between the first and last hours at which most people are indoors (Pfl) could also be calculated as underlying indicators of feeding by mosquitoes indoors or at night, respectively. RESULTS: The vast majority of human exposure to Anopheles bites occurred indoors (Ď€(i)(B)= 0.79-1.00). Neither An. gambiae s.l. nor An. funestus s.l. strongly preferred feeding indoors (P(i) = 0.40-0.63 and 0.22-0.69, respectively), but they overwhelmingly preferred feeding at times when most humans were indoors (P(fl) = 0.78-1.00 and 0.86-1.00, respectively). CONCLUSIONS: These quantitative summaries of behavioural interactions between humans and mosquitoes constitute a remarkably consistent benchmark with which future observations of vector behaviour can be compared. Longitudinal monitoring of these quantities is vital to evaluate the effectiveness of ITNs and IRS and the need for complementary measures that target vectors outdoors
Spatial and temporal dynamics of malaria transmission in rural western Kenya
ABSTRACT: BACKGROUND: Understanding the impact of reducing Plasmodium falciparum malaria transmission requires estimates of the relationship between health outcomes and exposure to infectious mosquitoes. However, measures of exposure such as mosquito density and entomological inoculation rate (EIR) are generally aggregated over large areas and time periods, biasing the outcome-exposure relationship. There are few studies examining the extent and drivers of local variation in malaria exposure in endemic areas. METHODS: We describe the spatio-temporal dynamics of malaria transmission intensity measured by mosquito density and EIR in the KEMRI/CDC health and demographic surveillance system using entomological data collected during 2002-2004. Geostatistical zero inflated binomial and negative binomial models were applied to obtain location specific (house) estimates of sporozoite rates and mosquito densities respectively. Model-based predictions were multiplied to estimate the spatial pattern of annual entomological inoculation rate, a measure of the number of infective bites a person receive per unit of time. The models included environmental and climatic predictors extracted from satellite data, harmonic seasonal trends and parameters describing space-time correlation. RESULTS: Anopheles gambiae s.l was the main vector species accounting for 86% (n=2309) of the total collected mosquitoes with the remainder being Anopheles funestus. Sixty eight percent (757/1110) of the surveyed houses had no mosquitoes. Distance to water bodies, vegetation and day temperature were significantly associated with mosquito density. Overall annual point estimates of EIR were 6.7, 9.3 and 9.6 infectious bites per annum for 2002, 2003 and 2004 respectively. Monthly mosquito density and EIR varied over the study period peaking in May during the wet season. The predicted and observed densities and EIR showed a strong seasonal and spatial pattern over the study area. CONCLUSIONS: Spatio-temporal maps of malaria transmission intensity obtained in this study are not only useful in understanding variability in malaria epidemiology over small areas but also provides a high resolution exposure surface that can be used to analyse the impact of malaria exposure on mortalit
Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes.
Eliminating malaria from highly endemic settings will require unprecedented levels of vector control. To suppress mosquito populations, vector control products targeting their blood hosts must attain high biological coverage of all available sources, rather than merely high demographic coverage of a targeted resource subset, such as humans while asleep indoors. Beyond defining biological coverage in a measurable way, the proportion of blood meals obtained from humans and the proportion of bites upon unprotected humans occurring indoors also suggest optimal target product profiles for delivering insecticides to humans or livestock. For vectors that feed only occasionally upon humans, preferred animal hosts may be optimal targets for mosquito-toxic insecticides, and vapour-phase insecticides optimized to maximize repellency, rather than toxicity, may be ideal for directly protecting people against indoor and outdoor exposure. However, for vectors that primarily feed upon people, repellent vapour-phase insecticides may be inferior to toxic ones and may undermine the impact of contact insecticides applied to human sleeping spaces, houses or clothing if combined in the same time and place. These concepts are also applicable to other mosquito-borne anthroponoses so that diverse target species could be simultaneously controlled with integrated vector management programmes. Measurements of these two crucial mosquito behavioural parameters should now be integrated into programmatically funded, longitudinal, national-scale entomological monitoring systems to inform selection of available technologies and investment in developing new ones
Wash durability and optimal drying regimen of four brands of long-lasting insecticide-treated nets after repeated washing under tropical conditions
<p>Abstract</p> <p>Background</p> <p>The current study was undertaken to determine the optimal wash-drying regimen and the effects of different washing procedures on the efficacy, and durability of four brands of newly introduced long-lasting insecticide-treated nets (LLINs) under tropical conditions.</p> <p>Methods</p> <p>In the current study, the following four LLINs were tested: Olyset<sup>®</sup>, PermaNet <sup>®</sup>2.0, BASF<sup>® </sup>and TNT<sup>®</sup>. Nets were divided into three sets; one set was washed by hand rubbing and air-dried either hanging or spread on the ground in direct sunlight or hanging or spread on the ground under the shade. A second set was washed using the WHO protocol (machine) and the third set was washed by beating the nets on rocks. The biological activities of the nets were assessed by a three-minute bioassay cone test and the residual insecticide contents were determined using high performance liquid chromatography (HPLC) procedure.</p> <p>Results</p> <p>Nets that were dried hanging under the shade retained more insecticide, 62.5% and recorded higher mortality compared to nets which were dried lying on the ground in direct sunlight 58.8%, nets dried under the shade spread on the ground 56.3%, and 57.8% for nets dried hanging in direct sunlight. It was also observed that nets washed by the standard WHO protocol, retained more insecticide and were more effective in killing mosquitoes compared to nets washed by local methods of hand rubbing and beating on rocks. There were significant differences between drying regimens (p < 0.0001) and between washing procedures (p < 0.001) respectively. However, the effect of net type was statistically insignificant. The statistical differences on individual nets were also compared, for PermaNet<sup>® </sup>and TNT there were no significant differences observed between the four drying regimens (<it>p </it>= 0.7944 and 0.4703) respectively). For BASF and Olyset, the differences were significant (p < 0.001 and p > 0.0001).</p> <p>Conclusion</p> <p>The results of this study suggest that washing and drying regimen influence the insecticidal activity of LLINs. The standard WHOPES washing protocol underestimates the amount of insecticide washed from LLINs compared to the abrasive washing procedures that are used in the field. This suggests that there is need to educate net users to adopt a more gentle washing procedure while handling LLINs. The education should accompany net distribution campaigns.</p
Incidence and consequences of damage to insecticide-treated mosquito nets in Kenya
BACKGROUND: Efforts to improve the impact of long-lasting insecticidal nets (LLINs) should be informed by understanding of the causes of decay in effect. Holes in LLINs have been estimated to account for 7-11% of loss in effect on vectorial capacity for Plasmodium falciparum malaria in an analysis of repeated cross-sectional surveys of LLINs in Kenya. This does not account for the effect of holes as a cause of net attrition or non-use, which cannot be measured using only cross-sectional data. There is a need for estimates of how much these indirect effects of physical damage on use and attrition contribute to decay in effectiveness of LLINs. METHODS: Use, physical integrity, and survival were assessed in a cohort of 4514 LLINs followed for up to 4 years in Kenya. Flow diagrams were used to illustrate how the status of nets, in terms of categories of use, physical integrity, and attrition, changed between surveys carried out at 6-month intervals. A compartment model defined in terms of ordinary differential equations (ODEs) was used to estimate the transition rates between the categories. Effects of physical damage to LLINs on use and attrition were quantified by simulating counterfactuals in which there was no damage. RESULTS: Allowing for the direct effect of holes, the effect on use, and the effect on attrition, 18% of the impact on vectorial capacity was estimated to be lost because of damage. The estimated median lifetime of the LLINs was 2.9 years, but this was extended to 5.7 years in the counterfactual without physical damage. Nets that were in use were more likely to be in a damaged state than unused nets but use made little direct difference to LLIN lifetimes. Damage was reported as the reason for attrition for almost half of attrited nets, but the model estimated that almost all attrited nets had suffered some damage before attrition. CONCLUSIONS: Full quantification of the effects of damage will require measurement of the supply of new nets and of household stocks of unused nets, and also of their impacts on both net use and retention. The timing of mass distribution campaigns is less important than ensuring sufficient supply. In the Kenyan setting, nets acquired damage rapidly once use began and the damage led to rapid attrition. Increasing the robustness of nets could substantially increase their lifetime and impact but the impact of LLIN programmes on malaria transmission is ultimately limited by levels of use. Longitudinal analyses of net integrity data from different settings are needed to determine the importance of physical damage to nets as a driver of attrition and non-use, and the importance of frequent use as a cause of physical damage in different contexts
Risk factors for Anopheles mosquitoes in rural and urban areas of Blantyre District, southern Malawi
BackgroundAlthough urban malaria transmission is low and seasonal, it remains a major public health problem. This study aimed at demonstrating the presence of Anopheles mosquitoes and their potential to transmit malaria in urban settings.MethodsTwo cross-sectional surveys were carried out in Blantyre District, Malawi, during the dry and wet seasons of 2008 and 2010, respectively. A map of Blantyre was divided into a grid of 400 cells, of which 60 cells were randomly selected. Five households located within 100 m from the centre of each selected cell were enrolled, a standard questionnaire was administered, and indoor resting mosquitoes were sampled.ResultsIn 2008 and 2010, a total of 960 and 1045 mosquitoes were collected, respectively. Anopheles funestus comprised 9.9% (n = 95) and 10.3% (n = 108) during the two surveys, respectively. Anopheles gambiae sensu lato (s.l.) was rarely detected during the second survey (n = 6; 0.6%). Molecular identification was performed on samples collected during the first survey, and An. funestus sensu stricto (s.s.) was the only sibling species detected. All the Anopheles mosquitoes were collected from households located in rural areas of Blantyre and none from urban areas. In univariate analysis, the presence of open eaves was associated with increased Anopheles prevalence, both during the dry (incidence rate ratio, IRR = 4.3; 95% CI 2.4 – 7.6) and wet (IRR = 2.47; 95% CI 1.7 – 3.59) seasons. Chances of detecting Anopheles spp. decreased with increasing altitude (IRR = 0.996; 95% CI 0.995 – 0.997) and during the dry season, but increased during the wet season (IRR = 1.0017; 95% CI 1.0012 – 1.0023). These factors remained significant following a multiple Poisson regression analysis. No association was found between insecticide-treated bednet ownership and the number of Anopheles mosquitoes detected.ConclusionsThe presence of An. funestus s.s and An. gambiae s.l. in the periphery of Blantyre city was an indication that malaria transmission was potentially taking place in these areas
The effect of repeated washing of long-lasting insecticide-treated nets (LLINs) on the feeding success and survival rates of Anopheles gambiae
<p>Abstract</p> <p>Background</p> <p>Insecticide-treated nets protect users from mosquito bites, thereby preventing transmissions of mosquito borne pathogens. Repeated washing of nets removes insecticide on the netting rendering them ineffective within a short period. Long-lasting insecticide-treated nets (LLINs) offer longer time protection against such bites because they are more wash resistant, and are preferred to conventionally treated nets. However, there is limited information on the effect of repeated washing of LLINs on the feeding success and survival of wild malaria vectors.</p> <p>Methods</p> <p>The current study evaluated the effect of repeated washing of four brands of LLINs on the feeding success and survival rates of <it>Anopheles gambiae </it>sl reared from wild strains. In this study, two- to five-day old F1s, reared from gravid mosquitoes collected from an area with a high coverage of LLINs were offered blood meals through protective barriers of the above LLINs. Mosquitoes were exposed for a period of 10 minutes each time. Nets were tested unwashed and subsequently after every 5<sup>th </sup>through wash 15. After exposure mosquitoes were sorted out according to their feeding status. They were then held under normal laboratory conditions for 24 hours and mortality was scored in both fed and unfed.</p> <p>Results</p> <p>It was observed that mosquitoes did not feed through a barrier of unwashed LLINs. However, the feeding success and survival rates increased with successive number of washes and were also net brand dependant. After 15 washes, 49% of vectors succeeded to feed through a protective barrier of PermaNet 2.0 and 50% of the fed died after 24 hrs while after the same number of washes 60% of vectors succeeded to feed through Olyset brand of LLINs and all of them survived. In general, more mosquitoes survived after feeding through Olyset compared to the other four brands that were evaluated. When efficacy of individual LLINs was compared by a t-test analysis to a conventionally treated net, the results were not significantly different statistically for Olyset (<it>p = </it>0.239) and NetProtect (TNT) (<it>p = </it>0.135). However, the results were highly significant when comparison was made with PermaNet and Interceptor (BASF); <it>p </it>values 0.015 and 0.025 respectively.</p> <p>Conclusion</p> <p>The result of this study shows that repeated washing of LLINs at short time intervals using local washing methods may render them infective within a short time in preventing local vectors from feeding.</p
- …