6 research outputs found

    Measuring coupled oscillations using an automated video analysis technique based on image recognition

    Full text link
    [EN] The applications of the digital video image to the investigation of physical phenomena have increased enormously in recent years. The advances in computer technology and image recognition techniques allow the analysis of more complex problems. In this work, we study the movement of a damped coupled oscillation system. The motion is considered as a linear combination of two normal modes, i.e. the symmetric and antisymmetric modes. The image of the experiment is recorded with a video camera and analysed by means of software developed in our laboratory. The results show a very good agreement with the theory.This work has received financial support by the Universidad Polit¿ecnica de Valencia (PII20020632), Spain. We would like to thank the R+D+I Linguistic Assistance Office at the Universidad Politècnica de Valencia for their help in revising this paper.Monsoriu Serra, JA.; Gimenez Valentin, MH.; Riera Guasp, J.; Vidaurre, A. (2005). Measuring coupled oscillations using an automated video analysis technique based on image recognition. European Journal of Physics. 26(6):1149-1155. https://doi.org/10.1088/0143-0807/26/6/023S1149115526

    Animaciones Virtuales 3D de Electromagnetismo

    Full text link
    [ES] En los últimos años hemos comprobado cómo las herramientas multimedia han ido cobrando cada vez más importancia como complemento y ayuda en el proceso enseñanza-aprendizaje. Estas herramientas facilitan en gran medida la labor de los docentes para hacer llegar a los estudiantes los conceptos de las diferentes materias. En concreto, los entornos virtuales tridimensionales son una herramienta didáctica que ofrece grandes ventajas para poder comprender diferentes fenómenos físicos. Gracias a los entornos 3D podemos representar estos fenómenos físicos simulando su comportamiento y viéndolo desde una posición más ventajosa en cada momento. En este documento en formato PDF interactivo vamos a tratar conceptos básicos del electromagnetismo presentes en diversas asignaturas de la mayoría de las ingenierías.Gimenez Valentin, MH.; López Castellón, A.; Monsoriu Serra, JA. (2018). Animaciones Virtuales 3D de Electromagnetismo. http://hdl.handle.net/10251/121535

    Design and evaluation of a three-dimensional virtual laboratory on vector operations

    Full text link
    [EN] In Physics, many quantities are vectors, and their use requires typical operations such as addition, subtraction, scalar multiplication, scalar product (dot product), vector product (cross product), and scalar triple product. This is a very basic topic in all General Physics courses for Engineering degrees. However, we have detected that some students lack a deep understanding of vector operations and their properties. In this study, we present a virtual laboratory (developed using the tool Easy Java Simulations) for the study and understanding of these topics. The user can introduce the components of the input vectors and gets a three-dimensional representation, which can be scaled and rotated for better visualization. Any of the aforementioned operations can be selected, and the result is shown both numerically and graphically. The user can also modify any represented vector. In this way, the virtual lab provides a real-time visualization of how the change affects the result. The possibility of limiting the changes to either magnitude or direction is also included. The efficiency of the virtual laboratory has been tested analyzing the results obtained in two groups of students (virtual laboratory vs traditional resources). A satisfaction survey has been also carried out.Universitat Politecnica de Valencia, Grant/Award Number: PIME B24Salinas Marín, I.; Gimenez Valentin, MH.; Cuenca Gotor, VP.; Seiz Ortiz, R.; Monsoriu Serra, JA. (2019). Design and evaluation of a three-dimensional virtual laboratory on vector operations. Computer Applications in Engineering Education. 27(3):690-697. https://doi.org/10.1002/cae.22108S690697273Vidaurre, A., Riera, J., Giménez, M. H., & Monsoriu, J. A. (2002). Contribution of digital simulation in visualizing physics processes. Computer Applications in Engineering Education, 10(1), 45-49. doi:10.1002/cae.10016Depcik, C., & Assanis, D. N. (2005). Graphical user interfaces in an engineering educational environment. Computer Applications in Engineering Education, 13(1), 48-59. doi:10.1002/cae.20029Jimoyiannis, A., & Komis, V. (2001). Computer simulations in physics teaching and learning: a case study on students’ understanding of trajectory motion. Computers & Education, 36(2), 183-204. doi:10.1016/s0360-1315(00)00059-2Esquembre, F. (2002). Computers in physics education. Computer Physics Communications, 147(1-2), 13-18. doi:10.1016/s0010-4655(02)00197-2Steinberg, R. N. (2000). Computers in teaching science: To simulate or not to simulate? American Journal of Physics, 68(S1), S37-S41. doi:10.1119/1.19517GiménezMH SalinasI andMonsoriuJA Visualizador de operaciones con vectores (español/valencià/english) 2017.http://hdl.handle.net/10251/84650Accessed February 1 2019.TiplerPAandMoscaG Physics for Scientists and Engineers. New York NY: W.H. Freeman Cop 2008.NaveR HyperPhysics 2016.http://hyperphysics.phy‐astr.gsu.edu/hbase/hph.htmlAccessed February 1 2019.Esquembre, F. (2004). Easy Java Simulations: a software tool to create scientific simulations in Java. Computer Physics Communications, 156(2), 199-204. doi:10.1016/s0010-4655(03)00440-5Complements of Physics course description (2017).http://www.upv.es/titulaciones/GIM/menu_1015238i.htmlAccessed February 1 2019.Basic Physics for Engineering course description (2017).http://www.upv.es/titulaciones/GIEL/menu_1014686i.htmlAccessed February 1 2019

    The Smartphone as a Sound Level Meter: Visualizing Acoustical Beats

    Full text link
    [EN] Acoustics is a topic in first year Physics courses for engineering students. In this respect, we present in this work a simple experiment to study acoustic beat phenomenon. The superposition of sound waves of slightly different frequencies is captured with the microphone of a smartphone which is placed equidistantly from two speakers which are connected at the same time to AC generators. The smartphone is used here as a measuring instrument. Data registered from the sound level versus time were collected and exported to a «.csv» file for further analysis by means of a free Android application. Based on these data and applying a simple graphing analysis the frequency of the beat was determined and compared with the frequency difference set at the AC generators. Percentage discrepancies within 1% were obtained. This indicates the efficacy of the method used.The authors would like to thank the Institute of Education Sciences of the Universitat Politècnica de València (Spain), for the support to the research groups on teaching innovation MoMa and e-MACAFI and for supporting the Project PIME/2015/B18 which gave rise to this workSalinas Marín, I.; Gimenez Valentin, MH.; Castro-Palacio, J.; Gómez-Tejedor, J.; Monsoriu Serra, JA. (2017). The Smartphone as a Sound Level Meter: Visualizing Acoustical Beats. Tecnica Industrial. 318:34-38. https://doi.org/10.23800/9948S343831

    Demonstration of the parallel axis theorem through a smartphone

    Full text link
    The authors would like to thank the Institute of Educational Sciences of the Universitat Politecnica de Valencia (Spain) for the support of the Teaching Innovation Groups MoMa and e-MACAFI. JAS acknowledges Ramon y Cajal fellowship program (RYC-2015-17482).Salinas Marín, I.; Gimenez Valentin, MH.; Monsoriu Serra, JA.; Sans-Tresserras, JÁ. (2019). Demonstration of the parallel axis theorem through a smartphone. The Physics Teacher. 57(5):340-341. https://doi.org/10.1119/1.5098929S34034157

    Aprendizaje basado en proyectos en asignaturas de física: aplicación en el Grado en Ingeniería Eléctrica de la UPV

    Full text link
    [ES] En este trabajo se muestra la aplicación de la metodología de Aprendizaje Basado en Proyectos en la asignatura de Física del Grado en Ingeniería Eléctrica, mediante el estudio de la geometría de masas de elementos usualmente utilizados en las estructuras de las instalaciones eléctricas de energía solar, y su posterior presentación en formato póster. Se analiza la mejora en el aprendizaje de esta materia básica, así como el grado de satisfacción del alumnado con este proyecto.[EN] This work shows the application of the Project-Based Learning methodology in the subject of Physics of the bachelor¿s degree in Electrical Engineering, through the study of the geometry of masses of elements usually used in the structures of solar energy electrical installations, and its subsequent presentation in poster format. The improvement in the learning of this basic subject is analysed, as well as the degree of satisfaction of the students with this project.Este trabajo forma parte del Proyecto de Innovación y Mejora Educativa PIME/21-22/286 titulado: Aprendizaje Basado en Proyectos en asignaturas de Física: estudio de la geometría de masas en elementos de mobiliario, del Vicerrectorado de Estudios, Calidad y Acreditación de la Universitat Politècnica de València (Universidad Politécnica de Valencia), que es la entidad financiadora (UPV: Convocatoria de Proyectos dentro de Aprendizaje + Docencia. Proyectos de Innovación y Mejora Educativa).Salinas Marín, I.; Gimenez Valentin, MH.; Cuenca-Gotor, VP.; Sans-Tresserras, JÁ.; Ferrando, V.; Moll López, SE.; Moraño Fernández, JA.... (2022). Aprendizaje basado en proyectos en asignaturas de física: aplicación en el Grado en Ingeniería Eléctrica de la UPV. EscuelaTécnica Superior de Ingeniería del Diseño. Universitat Politècnica de València. 391-396. http://hdl.handle.net/10251/19175239139
    corecore