3 research outputs found

    Semianalytical Approach to the PDF of SINR in HPHT and LPLT Single-Frequency Networks

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] Single-frequency networks (SFN) are widely adopted in terrestrial broadcast networks based on high-power high-tower (HPHT) deployments. The mobile broadcasting standard Evolved Multimedia Broadcast Multicast Service (eMBMS) has been enhanced in Release 14 to enable SFN operation with larger CP duration which may allow for the deployment of large area SFNs and even the combined operation between HPHT and low-power low-tower (LPLT) cellular stations. The knowledge of the signal-to-interference-plus-noise ratio (SINR) distribution over an SFN area may facilitate the selection of transmission parameters according to the network topology. This paper presents a semianalytical method for the calculation of the SINR distribution in SFNs with low computational complexity compared to Monte Carlo simulations. The method, which builds on previous work developed for cellular communications, is applied to HPHT+LPLT SFNs and evaluated against different transmission and network parameters.This work was supported in part by the Ministerio de Educacion y Ciencia, Spain, under Grant TEC2014-56483-R, in part by European FEDER funds.Gimenez Gandia, JJ.; Sung, KW.; Gomez-Barquero, D. (2018). Semianalytical Approach to the PDF of SINR in HPHT and LPLT Single-Frequency Networks. IEEE Transactions on Vehicular Technology. 67(5):4173-4181. https://doi.org/10.1109/TVT.2018.2791347S4173418167

    Information-Theoretic Analysis and Performance Evaluation of Optimal Demappers for Multi-Layer Broadcast Systems

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] Multi-layer broadcast systems distribute services across time and frequency domain by means of power-division multiplexing. Successive interference cancelation is required, in general, in order to extract the content of all services. For a low-complexity implementation, the receiver can obtain the strongest (top-layer) signal assuming underlying signals to behave like thermal noise. The thermal noise assumption may not be valid under certain conditions and a more accurate characterization of the interference could bring improved performance. This paper analyzes the validity of the noise-like assumption considering the power ratio between signals and the required carrier-to-noise ratio for error-free reception. The main contribution of the paper is the proposal of a demapping algorithm that exploits the knowledge of the constellation of underlying signals. Generalized mutual information, performance evaluation, and complexity analysis are provided with the additive white Gaussian noise-like assumptions and with the proposed alternative in order to assess the potential performance improvements that can be achieved.This work was supported by in part by the Ministerio de Educacion y Ciencia, Spain under Grant TEC2014-56483-R, and in part by the European FEDER Funds.Garro, E.; Gimenez Gandia, JJ.; Klenner, P.; Gomez-Barquero, D. (2018). Information-Theoretic Analysis and Performance Evaluation of Optimal Demappers for Multi-Layer Broadcast Systems. IEEE Transactions on Broadcasting. 64(4):781-790. https://doi.org/10.1109/TBC.2018.2799300S78179064

    Wideband Broadcasting: A Power-Efficient Approach to 5G Broadcasting

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] Efficient and flexible use of spectrum will be inherent characteristics of fifth-generation (5G) communication technologies with native support of wideband operation with frequency reuse 1, i.e. all transmit sites use all available frequency resources. Although not from the very first 5G release of 3GPP (Third Generation Partnership Project), it is expected that broadcast/multicast technology components will later be added and fully integrated in the 5G system. The combination of both wideband and frequency reuse 1 may provide significant gains for broadcast transmissions in terms of energy efficiency, since it is more efficient to increase capacity by extending the bandwidth rather than increasing the transmit power over a given bandwidth. This breaks with the traditional concept of terrestrial broadcast frequency planning, and paves the way to new potential uses of UHF (Ultra High Frequency) spectrum bands for 5G broadcasting. This paper provides an insight into the fundamental advantages in terms of capacity, coverage as well as power saving of wideband broadcast operation. The role of the network deployment, linked to frequency reuse in the UHF band, and its influence in the performance of a Wideband Broadcasting system are discussed. The technical requirements and features that would enable such power-efficient solution are also addressed.This work was supported in part by the European Commission under the 5G-PPP project 5G-Xcast (H2020-ICT-2016-2 call, grant number 761498). The views expressed in this contribution are those of the authors and do not necessarily represent the project. This work was also partially supported by the Ministerio de Educacion y Ciencia, Spain (TEC2014-56483-R), co-funded by European FEDER funds.Gimenez Gandia, JJ.; Gomez-Barquero, D.; Mogarde, J.; Stare, E. (2018). Wideband Broadcasting: A Power-Efficient Approach to 5G Broadcasting. IEEE Communications Magazine. 56(3):119-125. https://doi.org/10.1109/MCOM.2018.170067511912556
    corecore