22 research outputs found

    Lipid-Modulated, Graduated Inhibition of N‑Glycosylation Pathway Priming Suggests Wide Tolerance of ER Proteostasis to Stress

    Get PDF
    Protein N-glycosylation is a cotranslational modification that takes place in the endoplasmic reticulum (ER). Disruption of this process can result in accumulation of misfolded proteins, known as ER stress. In response, the unfolded protein response (UPR) restores proteostasis or responds by controlling cellular fate, including increased expression of activating transcription factor 4 (ATF4) that can lead to apoptosis. The ability to control and manipulate such a stress pathway could find use in relevant therapeutic areas, such as in treating cancerous states in which the native ER stress response is often already perturbed. The first committed step in the N-glycosylation pathway is therefore a target for potential ER stress modulation. Here, using structure-based design, the scaffold of the natural product tunicamycin allows construction of a panel capable of graduated inhibition of DPAGT1 through lipid-substituent-modulated interaction. The development of a quantitative, high-content, cellular immunofluorescence assay allowed precise determination of downstream mechanistic consequences (through the nuclear localization of key proxy transcription factor ATF4 as a readout of resulting ER stress). Only the most potent inhibition of DPAGT1 generates an ER stress response. This suggests that even low-level background biosynthetic flux toward protein glycosylation is sufficient to prevent response to ER stress. Tuned inhibitors of DPAGT1 also now seemingly successfully decouple protein glycosylation from apoptotic response to ER stress, thereby potentially allowing access to cellular states that operate at the extremes of normal ER stress

    Spatial variation of trace metals within intertidal beds of native mussels (Mytilus edulis) and non-native Pacific oysters (Crassostrea gigas): implications for the food web?

    Get PDF
    Abstract Pollution is of increasing concern within coastal regions and the prevalence of invasive species is also rising. Yet the impact of invasive species on the distribution and potential trophic transfer of metals has rarely been examined. Within European intertidal areas, the non-native Pacific oyster (Crassostrea gigas) is becoming established, forming reefs and displacing beds of the native blue mussel (Mytilus edulis). The main hypothesis tested is that the spatial pattern of metal accumulation within intertidal habitats will change should the abundance and distribution of C. gigas continue to increase. A comparative analysis of trace metal content (cadmium, lead, copper and zinc) in both species was carried out at four shores in south-east England. Metal concentrations in bivalve and sediment samples were determined after acid digestion by inductively coupled plasma-optical emission spectrometry. Although results showed variation in the quantities of zinc, copper and lead (mg m-2) in the two bivalve species, differences in shell thickness are also likely to influence the feeding behaviour of predators and intake of metals. The availability and potential for trophic transfer of metals within the coastal food web, should Pacific oysters transform intertidal habitats, is discussed

    Pathogen-sugar interactions revealed by universal saturation transfer analysis

    Get PDF
    Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an “end-on” manner. uSTA-guided modeling and a high-resolution cryo–electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis

    Modular Total Synthesis and Antimycobacterial Activity of Rufomycins.

    Full text link
    The rufomycins are a family of nonribosomal cyclic peptides isolated from the deep sea-dwelling Streptomyces atratus. Herein, we describe the total synthesis of six congeners in the rufomycin family. Synthesis was achieved through a modular solid-phase strategy, incorporating synthetic nonproteinogenic amino acids: l-2-amino-4-hexenoic acid, tert-prenyl-l-tryptophan (and related (S)-epoxide), and N-methyl-δ-hydroxy-l-leucine. Following macrolactamization, these peptides were further diversified through late-stage oxidation and secondary cyclization to furnish a library of six synthetic natural products. Rufomycins 4 and 22, bearing an unusual 6-hydroxypiperidin-2-one structural motif, exhibited impressive activity against the virulent H37Rv strain of Mycobacterium tuberculosis (MIC50 = 350-670 nM)

    Synthesis of sansalvamide A peptidomimetics: Triazole, oxazole, thiazole, and pseudoproline containing compounds

    No full text
    Peptidomimetic-based macrocycles typically have improved pharmacokinetic properties over those observed with peptide analogs. Described are the syntheses of 13 peptidomimetic derivatives that are based on active Sansalvamide A structures, where these analogs incorporate heterocycles (triazoles, oxazoles, thiazoles, or pseudoprolines) along the macrocyclic backbone. The syntheses of these derivatives employ several approaches that can be applied to convert a macrocyclic peptide into its peptidomimetic counterpart. These approaches include peptide modifications to generate the alkyne and azide for click chemistry, a serine conversion into an oxazole, a Hantzsch reaction to generate the thiazole, and protected threonine to generate the pseudoproline derivatives. Furthermore, we show that two different peptidomimetic moieties, triazoles and thiazoles, can be incorporated into the macrocyclic backbone without reducing cytotoxicity: triazole and thiazole

    Estimating direct N2O emissions from sheep, beef, and deer grazed pastures in New Zealand hill country: accounting for the effect of land slope on the N2O emission factors from urine and dung

    Get PDF
    AbstractNearly one-half of New Zealand’s ruminant livestock graze on hill country pastures where spatial differences in soil conditions are highly variable and excretal deposition is influenced by pasture production, animal grazing and resting behaviour that impact the nitrous oxide (N2O) emission factor from excreta (EF3). New Zealand currently uses country-specific EF3 values for urine and dung of 0.01 and 0.0025, respectively, to estimate direct N2O emissions from excreta. These values have largely been developed from trials on flat pastoral land. The use of the same EF3 for hill pasture with medium and steep slopes has been recognised as a possible source of overestimation of N2O emissions in New Zealand. The objectives of this study were to develop and describe an approach that takes into account the effects of slope in estimating hill country N2O emissions from the dung and urine of ruminant animals (sheep, beef cattle, and deer) across different slope classes, and then compare these estimates with current New Zealand inventory estimates. We use New Zealand as a case study to determine the direct N2O emissions between 1990 and 2012 from sheep, beef cattle and deer excreta using updated estimates of EF3 for sloping land, the area of land in different slope classes by region and farm type, and a nutrient transfer model to allocate excretal-N to the different slope classes, and compare the changes between these hill pastures-specific and current inventory estimates. Our findings are significant – the proposed new methodology using New Zealand specific EFs calculated from a national series of hill country experiments resulted in 52% lower N2O estimates relative to using current inventory emission factors, for the period between 1990 and 2012 and reduces New Zealand’s total national agricultural N2O greenhouse inventory estimates by 16%. The improved methodology is transparent, and complete, and has improved accuracy of emission estimates. On this basis, the improved methodology of estimating N2O emission is recommended for adoption where hill land grasslands are grazed by sheep, beef cattle and deer

    Reductive site-selective atypical C,Z-type/N2-C2 cleavage allows C-terminal protein amidation

    No full text
    Biomolecule environments can enhance chemistries with the potential to mediate and modulate self-modification (e.g., self-cleavage). While these enhanced modes are found in certain biomolecules (e.g., RNA ribozymes), it is more rare in proteins. Targeted proteolytic cleavage is vital to physiology, biotechnology, and even emerging therapy. Yet, purely chemically induced methods for the site-selective cleavage of proteins remain scarce. Here, as a proof of principle, we designed and tested a system intended to combine protein-enhanced chemistry with tag modification to enable synthetic reductive protein chemistries promoted by diboron. This reductively driven, single-electron chemistry now enables an operationally simple, site-selective cleavage protocol for proteins directed to readily accessible dehydroalanine (Dha) residues as tags under aqueous conditions and in cell lysates. In this way, a mild, efficient, enzyme-free method now allows not only precise chemical proteolysis but also simultaneous use in the removal of affinity tags and/or protein-terminus editing to create altered N- and C-termini such as protein amidation (─CONH2)

    Light-driven post-translational installation of reactive protein side chains

    No full text
    Post-translational modifications (PTMs) greatly expand the structures and functions of proteins in nature. Although synthetic protein functionalization strategies allow mimicry of PTMs, as well as formation of unnatural protein variants with diverse potential functions, including drug carrying, tracking, imaging and partner crosslinking, the range of functional groups that can be introduced remains limited. Here we describe the visible-light-driven installation of side chains at dehydroalanine residues in proteins through the formation of carbon-centred radicals that allow C–C bond formation in water. Control of the reaction redox allows site-selective modification with good conversions and reduced protein damage. In situ generation of boronic acid catechol ester derivatives generates RH2C• radicals that form the native (β-CH2–γ-CH2) linkage of natural residues and PTMs, whereas in situ potentiation of pyridylsulfonyl derivatives by Fe(II) generates RF2C• radicals that form equivalent β-CH2–γ-CF2 linkages bearing difluoromethylene labels. These reactions are chemically tolerant and incorporate a wide range of functionalities (more than 50 unique residues/side chains) into diverse protein scaffolds and sites. Initiation can be applied chemoselectively in the presence of sensitive groups in the radical precursors, enabling installation of previously incompatible side chains. The resulting protein function and reactivity are used to install radical precursors for homolytic on-protein radical generation; to study enzyme function with natural, unnatural and CF2-labelled post-translationally modified protein substrates via simultaneous sensing of both chemo- and stereoselectivity; and to create generalized ‘alkylator proteins’ with a spectrum of heterolytic covalent-bond-forming activity (that is, reacting diversely with small molecules at one extreme or selectively with protein targets through good mimicry at the other). Post-translational access to such reactions and chemical groups on proteins could be useful in both revealing and creating protein function
    corecore