5 research outputs found

    Evaluating methods to deter bats

    Get PDF

    Comparing acoustic and radar deterrence methods as mitigation measures to reduce human-bat impacts and conservation conflicts

    Get PDF
    Where humans and wildlife co-exist, mitigation is often needed to alleviate potential conflicts and impacts. Deterrence methods can be used to reduce impacts of human structures or activities on wildlife, or to resolve conservation conflicts in areas where animals may be regarded as a nuisance or pose a health hazard. Here we test two methods (acoustic and radar) that have shown potential for deterring bats away from areas where they forage and/or roost. Using both infrared video and acoustic methods for counting bat passes, we show that ultrasonic speakers were effective as bat deterrents at foraging sites, but radar was not. Ultrasonic deterrents decreased overall bat activity (filmed on infrared cameras) by ~80% when deployed alone and in combination with radar. However, radar alone had no effect on bat activity when video or acoustic data were analysed using generalised linear mixed effect models. Feeding buzzes of all species were reduced by 79% and 69% in the ultrasound only treatment when compared to the control and radar treatments, but only the ultrasound treatment was significant in post-hoc tests. Species responded differently to the ultrasound treatments and we recorded a deterrent effect on both Pipistrellus pipistrellus (~40-80% reduction in activity) and P. pygmaeus (~30-60% reduction), but not on Myotis species. However, only the ultrasound and radar treatment was significant (when compared to control and radar) in post-hoc tests for P. pipistrellus. Deterrent treatment was marginally non-significant for P. pygmaeus, but the ultrasound only treatment was significant when compared to radar in post-hoc tests. We therefore suggest that acoustic, but not radar methods are explored further as deterrents for bats. The use of acoustic deterrence should always be assessed on a case-by-case basis, with a focus on bat conservation

    Sexual segregation occurs in bats within fragmented remnant woodlands in an agricultural landscape

    Get PDF
    Abstract: Species‐specific responses to landscape configuration and landscape composition have been studied extensively. However, little work has been done to compare intraspecific differences in habitat preferences. Bats have potential as good bioindicator taxa in woodland habitats. Therefore, studying sex differences in responses to woodland and the wider landscape can allow us to gain insight into the relative importance of these habitats for both bats and other taxa. In this study, we aimed to test the predictions that (i) habitat type and connectivity will influence the probability of recording female bats in woodlands and (ii) sex differences in response to habitat type and connectivity will be species‐specific. Bat capture data was collected in 206 woodlands over 3 years in England. The probability of detecting females relative to males was modeled in response to a range of woodland characteristics and landscape metrics for six bat species. We recorded sex differences in responses to landscape features in three species. We found a higher probability of capturing female Myotis nattereri in woodlands that were surrounded by a higher proportion of improved grasslands, whereas female Myotis mystacinus were less likely to be recorded in woodlands surrounded by semi‐natural vegetation. Female Plecotus auritus were more likely to be recorded in isolated woodlands with less connectivity to other woodlands and where agriculture dominated the surrounding landscape. Our findings indicate that sexual segregation occurs across several UK bat species in response to landscape connectivity and composition. Sexual segregation in response to landscape characteristics in bats should therefore be an important consideration in the management of fragmented agricultural landscapes

    Effects of DNA supercoiling on chromatin architecture

    Get PDF
    Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo
    corecore