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Abstract

Where humans and wildlife co-exist, mitigation is often needed to alleviate potential conflicts

and impacts. Deterrence methods can be used to reduce impacts of human structures or

activities on wildlife, or to resolve conservation conflicts in areas where animals may be

regarded as a nuisance or pose a health hazard. Here we test two methods (acoustic and

radar) that have shown potential for deterring bats away from areas where they forage and/

or roost. Using both infrared video and acoustic methods for counting bat passes, we show

that ultrasonic speakers were effective as bat deterrents at foraging sites, but radar was not.

Ultrasonic deterrents decreased overall bat activity (filmed on infrared cameras) by ~80%

when deployed alone and in combination with radar. However, radar alone had no effect on

bat activity when video or acoustic data were analysed using generalised linear mixed effect

models. Feeding buzzes of all species were reduced by 79% and 69% in the ultrasound only

treatment when compared to the control and radar treatments, but only the ultrasound treat-

ment was significant in post-hoc tests. Species responded differently to the ultrasound treat-

ments and we recorded a deterrent effect on both Pipistrellus pipistrellus (~40–80%

reduction in activity) and P. pygmaeus (~30–60% reduction), but not on Myotis species.

However, only the ultrasound and radar treatment was significant (when compared to con-

trol and radar) in post-hoc tests for P. pipistrellus. Deterrent treatment was marginally non-

significant for P. pygmaeus, but the ultrasound only treatment was significant when com-

pared to radar in post-hoc tests. We therefore suggest that acoustic, but not radar methods

are explored further as deterrents for bats. The use of acoustic deterrence should always be

assessed on a case-by-case basis, with a focus on bat conservation.

Introduction

With an ever-expanding world population, increased incidences of human-wildlife interac-

tions are inevitable. These interactions can lead to detrimental impacts on wildlife, ranging

from habitat loss to direct mortality and in some cases can also have significant impacts on

human lives [1]. The phrase ‘human-wildlife conflict’ can be misleading, as it pitches humans
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and animals against each other [2]. In areas where humans and wildlife coexist, conflict often

arises between stakeholders wishing to conserve species and those who have other more

anthropocentric interests [2]. Therefore, the phrases ‘human-wildlife impacts’ and ‘conserva-

tion conflicts’ more adequately sum up human-wildlife interactions [2, 3].

Human-wildlife impacts and conservation conflicts are often key conservation concerns for

a wide range of taxa [3]. Many human structures and activities put species at risk, for example

by inducing changes in behaviour, degrading habitats or by producing a direct mortality risk

[4–6]. Conservation research has therefore focussed on mitigation strategies that exclude ani-

mals from areas where they may come to harm, or where they may impact or cause damage to

human activities/structures, for example using deterrence [7–15].

Bats are one group for which deterrence has been suggested as a potential mitigation

method for reducing human impacts and conservation conflicts [12, 16–19]. Protecting bat

species is a key conservation concern for many European countries and many species have

legal protection and/or are listed as ‘Endangered’ [20]. Being slow to reproduce, long-lived and

subject to the high energy requirements of flight, bats are regarded as vulnerable to threats

such as habitat loss, climate change and emerging diseases [20]. Human structures and activi-

ties can also put bat populations at risk and are therefore present potential applications for

deterrence. For example, wind energy development and construction pose significant threats

to bat populations, with large numbers of fatalities documented in North America in recent

decades [21, 22]. Fatalities in Europe are not documented on such a large scale, but still have

the potential to cause deleterious effects to resident and migratory bat populations [23–27].

Deterrence may therefore provide a way to keep bats away from the rotor-swept zone of wind

turbines, reducing fatalities [16]. Similarly, roads and other transport infrastructures are also

likely to have significant negative impacts on bat populations, due to habitat loss, noise pollu-

tion and mortality due to collision, yet mitigation is at present mostly insufficient [28]. Deter-

rence could be used alongside existing mitigation such as green bridges or overpasses,

diverting bats away from flight lines over roads where they may be at risk from collision,

towards safer routes.

Bats can also cause damage and a cleaning burden in historic buildings where they roost

[12] and in some cases pose a human health hazard in workplaces, schools and places of wor-

ship [29, 30]. Conservation conflicts can therefore arise between those wishing to conserve bat

populations and people using a building where bats are roosting and causing problems (usually

with their urine and faeces) [12, 29]. In some cases, this leads to exclusion of bats from build-

ings, which if carried out unlawfully or without careful consideration, can be detrimental to a

colony’s survival [30].

Therefore, reducing the impact of human structures, activities and conservation conflicts

on bat populations, is crucial for bat conservation, and should be a priority. However, before a

deterrence method is implemented, exploration of alternatives should be undertaken, follow-

ing the mitigation hierarchy, first seeking to avoid or minimise any impacts before moving to

reduce or compensate [31]. Indeed, using deterrence to move bats out of an area may cause

unintended effects, such as habitat loss, barrier effects and/or stress, which need to be weighed

up against alternative mitigation [32]. However, where more benign alternatives fail, deter-

rence is a method that should be considered, especially in situations where bats are at risk of

serious harm or direct mortality.

Potential deterrence methods for bats include light, radar and sound [12, 16, 18, 33–35].

Some bat species are deterred by certain types of lighting, for example streetlights or flood-lights

[33, 36–38]. Lighting has recently been tested as a potential bat deterrent for use in churches

where urine and faeces can cause damage and a cleaning burden [12, 39]. Illumination of ‘no-

fly zones’ within churches limited use of those areas, but bats became entombed in roosts that
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were directly lit, causing the authors to caution against using this method without careful con-

sideration and further investigation [12]. Indeed, lighting in buildings where bats roost can be

problematic and even detrimental for species that roost there, causing delays in emergence,

roost abandonment, habitat fragmentation, effects on commuting, foraging and hibernation,

and in some cases death [33, 40]. One striking example was the report of a 40watt light bulb

causing the sudden deaths of over 1000 Myotis myotis bats in Germany, when it was left on

inside a roost for two days [40]. Roosting colonies of Plecotus species were also significantly

reduced in churches in Sweden, where flood-lights had been installed, when compared to non-

lit churches over the same 25+ years [38]. Ultraviolet (UV) light has also shown potential as a

deterrent for Hawaiian hoary bats (Lasiurus cinereus semotus) at wind turbines, where they are

at risk of collision [35]. However, light has the potential to be attractive to some bat species,

rather than a deterrent [33, 37], probably due to its attractive effect on insects, which often

aggregate around street lights, especially those that emit UV [41–43]. Due to the potential for

adverse effects of light deterrents for bats outweighing the potential benefits, we decided not to

include these methods in this study and focussed instead on radar and acoustic deterrents.

Radar has been proposed as a bat deterrent, specifically for use at wind turbines [18, 19].

Suggested mechanisms of deterrence include a thermal burden effect of the electromagnetic

radiation, or a jamming effect on echolocation, by high frequency sound produced during

thermoelastic expansion of brain tissue [18]. Bat activity and foraging effort were lower at air

traffic control regions in Scotland where radar was deployed [18]. A follow-on study, also in

Scotland, recorded reduced bat echolocation call activity and foraging when an X-band (8–12

GHz) marine radar unit was used at riparian foraging sites [18].

The potential for using ultrasound (high frequency sound above 20 kHz) to deter bats has also

received attention [12, 16]. Foraging bats tend to avoid noise, whether from natural sources (e.g.

high frequency sounds emitted by insects and/or produced by turbulent water) [44, 45] or anthro-

pogenic noise pollution (e.g. traffic noise) [46–49]. Ambient noise may deter bats, as it precludes

the use of echolocation for prey detection or orientation, masks sounds made by insect prey, or

simply because it produces a disturbing airspace [44–48]. Sources of ultrasound may also affect a

bat’s ability to communicate with conspecifics or indeed the ability to eavesdrop on echolocation

calls of other bats (which can be beneficial for finding foraging sources and mates) [50, 51]. Bats

are also affected by high frequency ultrasonic clicks produced by some noxious moths (and their

mimics) and this is due, in part to a ‘jamming’ mechanism that leaves the bat’s echolocation system

unusable [52–55]. Therefore, bat deterrent systems are usually designed with the aim to mask or

jam the echolocation calls of bats [16]. Field trials of acoustic deterrents at wind farm sites in North

America were successful in reducing the numbers of bat fatalities [16]. The same speakers also

showed potential in reducing conservation conflicts in historic buildings, where bat droppings and

urine can potentially damage valuable historic artefacts [12, 39].

Deterrence is therefore a method that has potential in cases where other measures have

failed, to reduce impacts of human structures and activities on bats and alleviate conservation

conflicts in areas where bats roost and come into contact with humans. Our study compares

the effectiveness of radar and acoustic bat deterrents at foraging sites in the UK. We also dis-

cuss the potential for these deterrents to be used in mitigation more widely.

Materials and methods

Site selection, equipment and experimental procedure

We carried out experiments during June-September 2015 at 16 riparian sites (>1 km apart, to

minimise the chances of recording the same bats) that contained a stretch of river or canal

with an area of still water and a bridge, chosen as they were likely to have relatively high
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concentrations of foraging bats [56]. River sites were located on the border of England and

Wales in Herefordshire/Shropshire and Powys, (area range 52˚25’16.62"N, 3˚1’34.14"W to 52˚

20’55.92"N, 2˚59’0.59"W) and canal sites in Gloucestershire and Somerset (51˚49’22.81"N, 2˚

17’55.97" to 51˚22’57.54"N, 2˚23’50.84"W). We deployed ultrasonic speakers (Deaton engi-

neering Inc., Texas, USA) and radar (X-band Marine Radar FR-8062, Furuno Electric Co.,

Ltd, Tokyo, Japan), together and in isolation, alternately with a silent control (no sound/radar)

for 10 minutes per treatment, over 4 treatment time blocks (with a 5-minute recovery period

after each treatment time block where no sound/radar was deployed). Experiments lasted 1

hour, starting 30–45 minutes after sunset (depending on ambient light levels), when bat activ-

ity was likely to be at its highest. We alternated the four treatments over the 16 sites, following

a temporal Latin square design, so that each of the four treatments was deployed at least once

in each of the four 10-minute time blocks. However, we could not use data from two sites in

the analysis due to equipment failure. We therefore performed statistical analysis on the data

using generalized linear mixed effect models (GLMMs), which control for unbalanced order

in experimental design [57]. We also included time block as a fixed effect in statistical analysis,

to control for temporal changes in bat activity during the experiment.

We used a near-infrared (NIR) security camera (Y-cam HD, Y-cam Inc., Twickenham, UK),

with IR illumination (2 LED lamps, ShantouScene, Shenzhen, China) and a laptop computer to

film the ‘treated airspace’ for 1 hour (Fig 1). We recorded bat activity acoustically using an

SM2BAT+ bat detector with an SMX-US omnidirectional ultrasonic microphone (Wildlife

Acoustics Inc., Massachusetts, USA; continuous .wav recording; 384 kHz sampling rate; SNR

10), placed at the edge of the treatment zone at ~20 m from the NIR camera (covering a range

of ~30 m). We placed the radar unit on a table at 0.5 m in front of the camera, with the antenna

at 1 m height, in the fixed position (rather than rotating) and set it to emit a pulse length of

0.3 μs (repetition rate 1200 Hz, peak power 6 kW), as this was the most likely set-up and duty

cycle to affect bat activity [18] (beam width: horizontal = 1.9˚, vertical = 22.0˚). We placed ultra-

sonic speaker units on chairs at ~0.5 m height and ~0.5 m apart and angled them in the same

direction as the radar beam towards the middle of the treatment area, perpendicular to the base-

line of the treatment area (where the camera was placed). Speakers were the same units as used

at a wind energy facility in North America [16] and in churches in the UK [12, 39] and had 16

transducers capable of emitting continuous broadband ultrasound at 20–100 kHz, with a fre-

quency of most energy of 50 kHz (Senscomp, Michigan, USA; source level at 1 m 110 dB SPL

min at 50 kHz; 85 dB SPL at 20 meters, 20˚C, 10% relative humidity and 101.33 kPa [16]; beam

angle 15˚ at -6 dB) (Fig 2). The speakers were chosen for testing as their frequency of most

energy overlapped with the echolocation call frequencies of British bat species likely to be pres-

ent during experiments, including Pipistrellus pipistrellus (frequency of most energy 45 kHz), P.

pygmaeus (55 kHz) and Myotis species (30–50 kHz) (Fig 2). We recorded temperature every 15

minutes using a Watson W-8681-SOLAR weather station (Watson Inc., Beijing, China). Experi-

ments were carried out on low wind nights (wind speeds<5 m/s) when there was no rainfall

forecast, as wind and rain can reduce bat activity. We powered the camera and acoustic deter-

rents using a low-noise generator (Honda EU10i, Honda, Tokyo, Japan), placed>10 m from

the treatment area, and the radar unit by a Bosch 12 V battery (Robert Bosch Ltd., Uxbridge,

UK). The generator was running during both control and treatment periods and a previous

study using a similar model found no generator effect on bat activity [34].

Video and acoustic analysis

We calculated bat activity from NIR footage for each treatment (number of bats moving in

and out of frame) using Quick Time Player (v7.7.8, Apple Inc, Cupertino, USA). Video

Comparing deterrence to reduce human-bat impacts and conservation conflicts
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analysis was carried out blind to treatment and results were validated by an independent

observer (for five randomly selected sites). We identified bat passes manually to genus or spe-

cies level where possible using Bat Sound (v4.1.4, Pettersson, Uppsala, Sweden; FFT size: 1024;

FFT window: Hanning) and calculated acoustic bat activity, as the number of passes or feeding

Fig 1. Schematic of example experiment set-up at riparian sites. Schematic of experiment set-up at riparian sites,

including treated airspace (textured area) in an area of river/canal with a bridge, flanked by a tree line or hedge on one

side. Near infrared (NIR) video camera and laptop were set up at 0 m (a.), the radar unit on a table at 0.5 m from the

camera (b.), the acoustic deterrent speaker units on chairs at 1 m (c.) and the SM2 BAT+ bat detector at ~20 m (d.).

https://doi.org/10.1371/journal.pone.0228668.g001
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buzzes in 10 s (a new pass was identified as a sequence of calls>1 s from the last and feeding

buzzes are discernible due to their high repetition rate) [58, 59].

Speaker noise completely masked bat calls recorded at eight sites (peak frequency threshold

of>40 kHz). For the remaining six sites, calls were discernible in ultrasound treatment files,

but still less so than in radar and control files, where no deterrent sound was broadcast. We

therefore added the deterrent noise to files recorded at six sites recorded during non-ultra-

sound treatments using MATLAB 2016a sum wave files function (Mathworks, Natick, USA),

to avoid any bias introduced by some files being easier to score.

Fig 2. Spectrogram and power spectrum of acoustic deterrent speaker output and spectrograms of echolocation calls of bat species recorded.

Spectrogram (A.) and power spectrum (B.) calculated from acoustic deterrent speaker unit output recorded on-axis in an anechoic chamber using a Sanken

CO-100K Super Wide Range Microphone and calibrated using a type 4231 Brüel & Kjær calibrator (114 dB SPL at 1 kHz). Power spectrum dB SPL

measurements calculated at 1 m and adjusted for spectral sensitivity of microphone and distance (original distance 2.2 m, FFT 128, Hamming window,

calculated in Avisoft SASLab Pro). Spectrograms of bat echolocation calls (C.), including two calls from a sequence identified as Pipistrellus pipistrellus (a.), P.

pygmaeus (b.) and Myotis species (c.). Both spectrograms were created using Raven Lite 2.0.0 with the same settings (spectrogram window Hann, size 512,

brightness 69, contrast 71).

https://doi.org/10.1371/journal.pone.0228668.g002
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Variables and model specification

We analysed the following response variables using GLMMs: visual bat activity (NIR video),

acoustic bat activity (Pipistrellus pipistrellus, P. pygmaeus and Myotis species) and bat feeding

buzzes for all species. We included the fixed effects of deterrent treatment (with levels: radar,
ultrasound, ultrasound and radar, control), time block (levels: A-D), temperature and an inter-

action term between deterrent treatment and time block in full models for the video data. We

also included an interaction term between deterrent treatment and temperature, to examine

any effects of temperature on the transmission of radar and/or ultrasound through the treat-

ment area. However, temperature data were missing at one site, due to equipment failure and

were substituted for the mean of all sites (<10% of data). Full models for acoustic data were

the same but did not contain temperature data, due to missing data representing >10%. We

also did not include an interaction term between deterrent treatment and time block in acous-

tic models, due to the low sample size precluding the use of a more complex model (rank defi-

ciency). We retained the random effects of site (N = 14 for NIR data, N = 6 for acoustic data)

and time block (A-D) in final models to control for the repeated measures design and to reduce

pseudoreplication.

Statistical analysis

We analysed bat pass count data with generalized linear mixed effect models (GLMMs), with a

Poisson family and log link function in R (v3.6.1), using the lme4 package (v.1.1–21)[60]. We

followed the backwards step-wise model selection method to find the most parsimonious, yet

best-fit model for the data (final model) [57, 61]. We removed terms sequentially from a more

complicated model when likelihood ratio tests (LRT) were non-significant and retained signif-

icant terms in the final model. LRT statistics are presented as χ2, df and p value and were

obtained from LRTs between a model containing a term, and a restricted model without that

term (or the null model). We present effect sizes and standard errors for final models in a table

and post-hoc Tukey contrast test results in the text as z-statistics and p values obtained using

the multcomp package (v1.4–1) [62]. We validated final models by simulation using the R

package DHARMa v.0.2.0, using residual plots to check for overdispersion, heteroscedasticity

and zero inflation [63].

Ethics statement

This study was approved by the University of Bristol Animal Welfare and Ethical Review Body

(licence no: UB/17/045) and carried out in accordance with, and under strict recommenda-

tions from the government licensing departments Natural England (2015-12272-SCI-SCI) and

Natural Resources Wales (66141:OTH:CSAB:2015). Privately owned sites and those managed

by the Canals and Rivers Trust were accessed with permission for all field experiments.

Results

Near-infrared video passes

We recorded a total of 3668 bat passes from 14 hours of near infrared (NIR) video footage

(electronic supplementary material S1 Table) and a mean number of bat passes (± SD) of

489.07 ± 253.04 per site. The final model for NIR video data did not show overdispersion,

zero-inflation or heteroscedasticity, when data were simulated using the R package DHARMa

(v.0.2.0) [63]. The model included the fixed effect deterrent treatment, but there was no effect

of temperature, time block or either interaction terms (between deterrent treatment and tem-

perature/time block) (Table 1). Bat activity (NIR video passes) was significantly reduced when
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an ultrasonic deterrent was deployed, but radar had no effect (Table 1 and Fig 3). Post-hoc

Tukey contrast tests showed there was a significant reduction in bat activity, during ultrasound

treatment blocks compared to the control periods and to radar treatment alone (81 and 84%

reduction respectively) (ultrasound-control: z = -4.63, p< 0.001; ultrasound-radar: z = -4.89,

p< 0.001). Bat passes were also significantly reduced (by 78 and 82%) when ultrasound and

radar where deployed together, compared to the control, and to radar, respectively (Tukey

contrasts: ultrasound & radar-control: z = -4.30, p< 0.001; ultrasound & radar-radar: z =

-4.56, p< 0.001). Tukey contrasts showed there was no difference between ultrasound treat-

ments and there was no reduction in bat activity when radar was compared to the control

(ultrasound & radar-ultrasound: z = -1.46, p = 0.46; radar-control z = 0.28, p = 0.99).

Acoustic passes

A total of 3073 acoustic bat passes were identified at 6 sites and a mean number of bat passes

per site of 512.17 (± SD 287.79), including 1518 Pipistrellus pygmaeus, 618 P. pipistrellus and

388 Myotis species passes and 514 feeding buzzes (representing 49, 20, 13 and 17% of passes)

(electronic supplementary material S2–S5 Tables). Rhinolophus hipposideros, unknown Pipis-
trellus species, Eptesicus serotinus and Nyctalus species made up the remaining passes (1%).

Final models for acoustic data were not overdispersed or zero-inflated and also did not show

heteroscedasticity in DHARMa (v.0.2.0) simulations [63]. Final models for P. pipistrellus data

included the fixed effect of deterrent treatment, but there was no effect of time block on the

number of passes recorded. P. pipistrellus passes were significantly reduced by 52 and 79%

respectively during ultrasound treatments (ultrasound only; ultrasound and radar, compared

to control). There was also a 39 and 72% reduction in P. pipistrellus passes during the ultra-
sound only, and ultrasound and radar treatments respectively, when compared to the radar
only treatment. However, only ultrasound and radar treatments were significantly different in

Tukey tests (Table 1 and Fig 3; Tukey contrasts: ultrasound & radar-control: z = -3.75,

p< 0.01; ultrasound & radar-radar: z = -2.61, p< 0.05; ultrasound-control: z = -2.34, p = 0.09;

ultrasound-radar: z = -1.17, p = 0.65; radar-control: z = -1.18, p = 0.64, ultrasound & radar-

ultrasound: z = -1.46, p = 0.46). We recorded a 61 and 40% reduction in P. pygmaeus activity

compared to the control, and a 56 and 33% reduction compared to radar, when ultrasound was

deployed alone and combined with radar. However, the null model was the most parsimoni-

ous when P. pygmaeus data were analysed using a GLMM and deterrent treatment was mar-

ginally non-significant in LRT tests (Table 1). Despite this, ultrasound and radar were

significantly different in Tukey contrast tests (ultrasound-radar: z = -2.63, p< 0.05; ultra-

sound-control: z = -2.01, p = 0.93; ultrasound & radar-control: z = -1.44, p = 0.47; ultrasound

& radar-radar: z = -2.05, p = 0.17; radar-control: z = 0.61, p = 0.93; ultrasound & radar-ultra-

sound: z = 0.56, p = 0.94). Myotis species activity was not affected by any of the deterrent treat-

ments, with similar numbers of passes recorded for all treatments. Bat feeding activity was

significantly reduced (by 79 and 69%) during the ultrasound treatment, compared to the con-
trol and radar treatments and by 48% during ultrasound and radar treatment when compared

to the control. However, bat activity was higher (25% increase) in ultrasound and radar treat-

ments when compared to radar, although no significant effect of the ultrasound and radar
treatment, or radar was observed in Tukey contrast tests (ultrasound-control: z = -3.57,

p< 0.01; ultrasound-radar: z = -2.65, p< 0.05; ultrasound & radar-control: z = -1.87, p = 0.24;

ultrasound & radar-radar: z = -0.92, p = 0.79; radar-control: z = -0.96, p = 0.77; ultrasound &

radar-ultrasound: z = 1.75, p = 0.30).
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Discussion

In this study, we have shown that radar was ineffective as a deterrent for bats at foraging sites,

but acoustic methods showed considerable promise. Previous work suggested that bat activity

was reduced at foraging sites in Scotland, UK, by radar deployment over a 10–30 m range [18].

However, we could not confirm this deterrent effect, using video nor acoustic data, despite

Table 1. Final model estimates (± SE) and likelihood ratio test statistics for near infrared (NIR) video and acoustic bat pass data, including Pipistrellus pipistrellus,
P. pygmaeus and Myotis spp. passes and feeding buzzes of all species.

Model Model terms Estimates SE χ2 df p
NIR video (Intercept) 3.32 0.28

Deterrent treatment 29.92 3 < 0.001

Radar 0.09 0.31

Ultrasound -1.51 0.33

Ultrasound & radar -1.39 0.32

Time block 0.69 3 0.88

Temperature 1.53 1 0.22

Deterrent treatment � temperature 3.63 3 0.30

Deterrent treatment � time block 13.87 9 0.13

Random effects Variance SD % total

Time block (within site) (N = 4) 0.62 0.79 59.12

Site (N = 14) 0.43 0.65 40.88

P. pipistrellus (Intercept) 3.62 0.36

Deterrent treatment 11.72 3 < 0.01

Radar -0.52 0.44

Ultrasound -1.06 0.45

Ultrasound & radar -1.76 0.47

Time block 0.04 1 0.84

Random effects Variance SD % total

Time block (nested within site) (N = 4) 0.55 0.74 74.45

Site (N = 6) 0.19 0.43 25.55

Feeding buzzes (Intercept) 3.04 0.46

Deterrent treatment 10.8 3 < 0.01

Radar -0.36 0.38

Ultrasound -1.45 0.41

Ultrasound & radar -0.72 0.39

Time block 2.05 3 0.56

Random effects Variance SD % total

Time block (nested within site) (N = 4) 0.35 0.59 29.2

Site (N = 6) 0.84 0.92 70.8

P. pygmaeus Deterrent treatment 7.36 3 0.06

Time block <0.01 1 0.95

Random effects Variance SD % total

Time block (nested within site) (N = 4) 0.84 0.92 64.12

Site (N = 6) 0.47 0.69 35.88

Myotis spp. Deterrent treatment 2.68 3 0.44

Time block 3.78 3 0.29

Random effects Variance SD % total

Time block (nested within site) (N = 4) 1.22 1.1 59.22

Site (N = 6) 0.84 0.92 40.78

https://doi.org/10.1371/journal.pone.0228668.t001
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using similar methodology and recording over the same range of up to 30 m. The radar beam

area projected by the unit used in both our study and the previous work in Scotland was highly

directional. The horizontal and vertical beam angle of 1.9˚ and 22˚, respectively, would result

in a treated airspace of ~0.7–1 m wide and 8–12 m tall (at ~20–30 m from the deterrents). In

comparison, the 15˚ beam angle of the speakers would have resulted in a ~5–8 m treated air-

space both horizontally and vertically. Therefore, bats may have only encountered the radar

beam briefly at the centre of the treatment area, when flying through it, possibly limiting any

potential for deterrence, if any exists. However, the speakers were positioned with the same

line of site of the radar beam, with one speaker either side of the centre of the antenna (Fig 1)

Fig 3. Number of near infrared video (NIR) and acoustic bat passes recorded during control and deterrent

treatments. Bat activity (mean number of passes) during 4 treatments of ultrasound (U), radar (R), ultrasound and

radar (U+R) and a control (C), including counts of bat passes recorded on near-infrared (NIR) video footage (a) and

acoustic bat passes identified as Pipistrellus pipistrellus (b), P. pygmaeus (c), Myotis spp. (d) and feeding buzzes of all

species (e). Including SE error bars and p values from post-hoc Tukey comparisons, presented as significance stars and

associated label of treatment comparison (� = p< 0.05, �� = p< 0.01, ��� = p< 0.001, ���� = p< 0.0001). NIR video

N = 14, acoustic data N = 6.

https://doi.org/10.1371/journal.pone.0228668.g003
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and so were likely to have covered the same treatment area vertically. Despite this and the fact

that the radar unit and methodology were very similar, it is unclear why the results of our

study did not corroborate the findings from the Scottish study [18].

Bats are known to avoid ambient and broadcast noise and this study supports previous

research in this area [12, 16, 45, 47, 48]. However, this study is the first to show a reduction in

bat activity at foraging sites using broadcast ultrasound in a European context. We recorded a

clear effect of ultrasound on bat activity with an ~80% reduction seen in the video footage data

(when compared to control and radar treatments) (Fig 3). However, the acoustic data does not

show such a clear trend, possibly due to unavoidable noise in the data from bat echolocation

calls being recorded outside the range of the deterrent and small sample sizes that were

unavoidable due to the deterrent masking echolocation calls at some sites. It was also not pos-

sible to discern feeding buzzes to species level due to high levels of overall activity and often

more than one species in each file. Despite this, ultrasound treatments had the lowest mean

number of bat passes recorded for all datasets, excluding Myotis species (Fig 3). We also found

an effect of the ultrasound and radar treatment (when compared to control and radar only)

and the ultrasound only treatment (when compared to radar) on Pipistrellus pipistrellus and P.

pygmaeus activity respectively. There was also an effect of ultrasound only on feeding activity

of all species. Myotis species were not significantly affected by any deterrent treatment.

The lack of response to acoustic deterrence by Myotis bats compared to Pipistrellus species,

may have been due differences in hearing and/or the mechanisms underpinning deterrence.

For example, the deterrent sound could have acted as an aversive stimulus rather than a mask-

ing one, as was the case in traffic noise playback experiments on M. daubentonii [46]. How a

bat species responds to a deterrent sound may be in part due to its hearing threshold, which in

bats typically range from about 20–30 dB, but may be as low as 0 dB [64–66]. Hearing thresh-

olds of bats are largely understudied, but can depend on frequency, the hearing system of the

individual and even the time of day [64–66]. Therefore, a difference in hearing thresholds may

account for the differences in response to acoustic deterrence in this study. The different

response to the deterrent of Myotis bats may also have been due to the experimental site selec-

tion and set-up. Due to the nature of the riparian sites, the Myotis species bats recorded were

likely to be Myotis daubentonii, which feed directing their echolocation calls towards the water

[67]. The Myotis bats may therefore have moved along the water during ultrasound treatments,

away from the speakers, to nearer the bridge, where we had placed the bat detector, resulting

in more passes recorded during ultrasound treatments. As Pipistrellus species are not limited

to feeding over water, they may have dispersed in different directions when the sound was

broadcast, rather than in the direction of the bat detector microphone. Myotis nattereri were

deterred from specific roosting areas, with no habituation effect found after 15 days when the

same acoustic deterrents as used in this study were tested in churches in Norfolk in the UK

[12]. Therefore, a deterrent effect of ultrasound can not be ruled out for Myotis daubentonii,
without a follow-up exploration of acoustic deterrents focussed on this species in this context

(e.g. with speakers pointing at the water’s surface).

Our findings support the premise that ultrasonic speakers show promise for use as bat

deterrents. We therefore recommend that these methods be considered as a way of reducing

impacts on bats from human structures and activities, and in situations where conservation

conflicts arise from bats roosting in buildings. For example, these methods could be used at

wind turbines to reduce bat fatalities in Europe, as has been done in North America [16].

Acoustic deterrence could also be used to manage bats that roost in buildings where people

live, work, study and worship, alleviating cleaning burdens, damage and risks to human health.

For example, the US Centre for Disease Control and Prevention (CDC) regards bats roosting

in buildings as a reservoir for histoplasmosis and therefore recommends exclusion to prevent

Comparing deterrence to reduce human-bat impacts and conservation conflicts

PLOS ONE | https://doi.org/10.1371/journal.pone.0228668 February 13, 2020 11 / 16

https://doi.org/10.1371/journal.pone.0228668


the threat to human health [68]. However, currently the CDC guidelines explicitly state that

deterrents are ineffective in this context. Therefore, we recommend updating these guidelines

to reflect the potential of ultrasonic deterrence.

Another application for acoustic deterrence is as part of transport infrastructure mitigation.

For example, acoustic deterrence methods could be used in combination with existing mitiga-

tion methods (e.g. over/underpasses, green bridges), to prevent bats from crossing roads or

train-lines, where they may be at risk from collision and mortality [28]. For example, acoustic

deterrence has been tested as a potential mitigation strategy for use in areas where woodland

bats may be affected by new train lines [69]. Current bat mitigation strategies for roads are at

present regarded as largely insufficient [28]. Methods such as overpasses that are currently

ineffective [70], could therefore be used in combination with acoustic deterrence, allowing

bats to utilise safer flight lines over roads.

Despite its potential, acoustic bat deterrence may have welfare implications that need to be

considered when weighing up its use against alternative mitigation methods. Deterrence, by its

design, acts to move animals out of an area, which may mean a reduction in access to foraging

resources or habitat features (such as roosts or commuting routes). If these resources are rare

in the remaining habitat not affected by deterrence, or if the noise degrades surrounding habi-

tats due to overspill effects, this could lead to unwanted impacts on the target species (and

non-target species). However, small-scale movement of bats to new roosts within churches

using acoustic deterrence did not affect where radio-tracked bats from the same church went

to forage and also had no other obvious impacts on behaviour [12, 39]. Bats are likely to

respond to an acoustic deterrent stimulus in a similar way to that from an anthropogenic

source, such as traffic or gas compressor noise [46–49]. Anthropogenic noise can induce mea-

surable stress responses in some animals such as an increase in cortisol levels or heart rate

[32]. However, any results of stress indication should also be weighed up against the short and

long-term effects of the human activity being mitigated for, which may cause more harm to

bats in the long term.

In conclusion, acoustic deterrence shows great potential for use as a mitigation measure, to

reduce human impacts on bats in a wide range of contexts. However, we found no evidence of

radar being an effective deterrent. We caution against the wide-spread use of acoustic deter-

rence as a universal solution to bat mitigation and recommend exploration of its use on a case-

by-case basis, following the mitigation hierarchy [31]. Displacement of bats may often seem a

legitimate way forward for conservation, but as with any mitigation measure, the methods

need to be weighed up against less invasive methods, avoiding any potentially detrimental

effects. Further work therefore needs to focus on safe, effective, practical and targeted imple-

mentation of deterrents in the applications discussed. As species-specific responses to acoustic

deterrence may also influence the efficacy and safe use of these methods, behavioural mecha-

nisms underpinning deterrence should also be explored, along with differences in hearing and

the distance over which these methods are effective for different species.
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