20 research outputs found

    Multiple mechanisms contribute to fluorometry signals from the voltage-gated proton channel

    Get PDF
    Voltage-clamp fluorometry (VCF) supplies information about the conformational changes of voltage-gated proteins. Changes in the fluorescence intensity of the dye attached to a part of the protein that undergoes a conformational rearrangement upon the alteration of the membrane potential by electrodes constitute the signal. The VCF signal is generated by quenching and dequenching of the fluorescence as the dye traverses various local environments. Here we studied the VCF signal generation, using the Hv1 voltage-gated proton channel as a tool, which shares a similar voltage-sensor structure with voltage-gated ion channels but lacks an ion-conducting pore. Using mutagenesis and lipids added to the extracellular solution we found that the signal is generated by the combined effects of lipids during movement of the dye relative to the plane of the membrane and by quenching amino acids. Our 3-state model recapitulates the VCF signals of the various mutants and is compatible with the accepted model of two major voltage-sensor movements

    Multiple mechanisms contribute to fluorometry signals from the voltage-gated proton channel

    Get PDF
    Abstract Voltage-clamp fluorometry (VCF) supplies information about the conformational changes of voltage-gated proteins. Changes in the fluorescence intensity of the dye attached to a part of the protein that undergoes a conformational rearrangement upon the alteration of the membrane potential by electrodes constitute the signal. The VCF signal is generated by quenching and dequenching of the fluorescence as the dye traverses various local environments. Here we studied the VCF signal generation, using the Hv1 voltage-gated proton channel as a tool, which shares a similar voltage-sensor structure with voltage-gated ion channels but lacks an ion-conducting pore. Using mutagenesis and lipids added to the extracellular solution we found that the signal is generated by the combined effects of lipids during movement of the dye relative to the plane of the membrane and by quenching amino acids. Our 3-state model recapitulates the VCF signals of the various mutants and is compatible with the accepted model of two major voltage-sensor movements

    The Plumber's Nightmare: 1

    No full text

    Whole-GUV patch-clamping

    No full text
    Studying how the membrane modulates ion channel and transporter activity is challenging because cells actively regulate membrane properties, whereas existing in vitro systems have limitations, such as residual solvent and unphysiologically high membrane tension. Cell-sized giant unilamellar vesicles (GUVs) would be ideal for in vitro electrophysiology, but efforts to measure the membrane current of intact GUVs have been unsuccessful. In this work, two challenges for obtaining the “whole-GUV” patch-clamp configuration were identified and resolved. First, unless the patch pipette and GUV pressures are precisely matched in the GUV-attached configuration, breaking the patch membrane also ruptures the GUV. Second, GUVs shrink irreversibly because the membrane/glass adhesion creating the high-resistance seal (>1 GΩ) continuously pulls membrane into the pipette. In contrast, for cell-derived giant plasma membrane vesicles (GPMVs), breaking the patch membrane allows the GPMV contents to passivate the pipette surface, thereby dynamically blocking membrane spreading in the whole-GMPV mode. To mimic this dynamic passivation mechanism, beta-casein was encapsulated into GUVs, yielding a stable, high-resistance, whole-GUV configuration for a range of membrane compositions. Specific membrane capacitance measurements confirmed that the membranes were truly solvent-free and that membrane tension could be controlled over a physiological range. Finally, the potential for ion transport studies was tested using the model ion channel, gramicidin, and voltage-clamp fluorometry measurements were performed with a voltage-dependent fluorophore/quencher pair. Whole-GUV patch-clamping allows ion transport and other voltage-dependent processes to be studied while controlling membrane composition, tension, and shape

    Functional reconstitution of a voltage-gated potassium channel in giant unilamellar vesicles.

    Get PDF
    Voltage-gated ion channels are key players in cellular excitability. Recent studies suggest that their behavior can depend strongly on the membrane lipid composition and physical state. In vivo studies of membrane/channel and channel/channel interactions are challenging as membrane properties are actively regulated in living cells, and are difficult to control in experimental settings. We developed a method to reconstitute functional voltage-gated ion channels into cell-sized Giant Unilamellar Vesicles (GUVs) in which membrane composition, tension and geometry can be controlled. First, a voltage-gated potassium channel, KvAP, was purified, fluorescently labeled and reconstituted into small proteoliposomes. Small proteoliposomes were then converted into GUVs via electroformation. GUVs could be formed using different lipid compositions and buffers containing low (5 mM) or near-physiological (100 mM) salt concentrations. Protein incorporation into GUVs was characterized with quantitative confocal microscopy, and the protein density of GUVs was comparable to the small proteoliposomes from which they were formed. Furthermore, patch-clamp measurements confirmed that the reconstituted channels retained potassium selectivity and voltage-gated activation. GUVs containing functional voltage-gated ion channels will allow the study of channel activity, distribution and diffusion while controlling membrane state, and should prove a powerful tool for understanding how the membrane modulates cellular excitability
    corecore