35 research outputs found
EFL GTPase in Cryptomonads and the Distribution of EFL and EF-1a in Chromalveolates
EFL (EF-like protein) is a member of the GTPase superfamily that includes several translation factors. Because it has only been found in a few eukaryotic lineages and its presence correlates with the absence of the related core translation factor EF-1a, its distribution is hypothesized to be the result of lateral gene transfer and replacement of EF-1a. In one supergroup of eukaryotes, the chromalveolates, two major lineages were found to contain EFL (dinoflagellates and haptophytes), while the others encode EF-1a (apicomplexans, ciliates, heterokonts and cryptomonads). For each of these groups, this distribution was deduced from whole genome sequence or expressed sequence tag (EST) data from several species, with the exception of cryptomonads from which only a single EF-1a PCR product from one species was known. By sequencing ESTs from two cryptomonads, Guillardia theta and Rhodomonas salina, and searching for all GTPase translation factors, we revealed that EFL is present in both species, but, contrary to expectations, we found EF-1a in neither. On balance, we suggest the previously reported EF-1a from Rhodomonas salina is likely an artefact of contamination. We also identified EFL in EST data from two members of the dinoflagellate lineage, Karlodinium micrum and Oxyrrhis marina, and from an ongoing genomic sequence project from a third, Perkinsus marinus. Karlodinium micrum is a symbiotic pairing of two lineages that would have both had EFL (a dinoflagellate and a haptophyte), but only the dinoflagellate gene remains. Oxyrrhis marina and Perkinsus marinus are early diverging sister-groups to dinoflagellates, and together show that EFL originated early in this lineage. Phylogenetic analysis confirmed that these genes are all EFL homologues, and showed that cryptomonad genes are not detectably related to EFL from other chromalveolates, which collectively form several distinct groups. The known distribution of EFL now includes a third group of chromalveolates, cryptomonads. Of the six major subgroups of chromalveolates, EFL is found in half and EF-1a in the other half, and none as yet unambiguously possess both genes. Phylogenetic analysis indicates EFL likely arose early within each subgroup where it is found, but suggests it may have originated multiple times within chromalveolates as a whole
An examination of protist diversity in serpentinization-hosted ecosystems of the Samail Ophiolite of Oman
In the Samail Ophiolite of Oman, the geological process of serpentinization produces reduced, hydrogen rich, hyperalkaline (pH > 11) fluids. These fluids are generated through water reacting with ultramafic rock from the upper mantle in the subsurface. On Earth’s continents, serpentinized fluids can be expressed at the surface where they can mix with circumneutral surface water and subsequently generate a pH gradient (∼pH 8 to pH > 11) in addition to variations in other chemical parameters such as dissolved CO2, O2, and H2. Globally, archaeal and bacterial community diversity has been shown to reflect geochemical gradients established by the process of serpentinization. It is unknown if the same is true for microorganisms of the domain Eukarya (eukaryotes). In this study, using 18S rRNA gene amplicon sequencing, we explore the diversity of microbial eukaryotes called protists in sediments of serpentinized fluids in Oman. We demonstrate that protist community composition and diversity correlate significantly with variations in pH, with protist richness being significantly lower in sediments of hyperalkaline fluids. In addition to pH, the availability of CO2 to phototrophic protists, the composition of potential food sources (prokaryotes) for heterotrophic protists and the concentration of O2 for anaerobic protists are factors that likely shape overall protist community composition and diversity along the geochemical gradient. The taxonomy of the protist 18S rRNA gene sequences indicates the presence of protists that are involved in carbon cycling in serpentinized fluids of Oman. Therefore, as we evaluate the applicability of serpentinization for carbon sequestration, the presence and diversity of protists should be considered
Survey and identification of termites (Insecta, Isoptera) using morphological and molecular methods from eastern, central and western Ethiopia.
The subfamily Macrotermitinae are the largest members among the Family Termitidae which are the fungus growing sub-family and Odontotermes are the most abundant genus from the subfamily. The taxonomy of termites is poorly described in Ethiopia. In the present study 168 termite samples were collected from eight locations of Eastern, Western and Central Ethiopia. The collected samples were identified based on morphological and molecular characteristics. Molecular identification was done based on the dna sequence of a portion of the mitochondrial 16S rrna gene. A phylogenetic analysis of the collected samples and the outgroup resulted in a consensus tree with four distinct groups. Geographical distribution of the samples also supported the resulting clades. Odontotermes were the most widely distributed termites from the collected samples. The genetic distance between the sample showed that Odontotermes zambesiensis, Babile 33 is more distantly related with the rest of the samples
Dinoflagellate nucleus contains an extensive endomembrane network, the nuclear net
Dinoflagellates are some of the most common eukaryotic cells in the ocean, but have very unusual nuclei. Many exhibit a form of closed mitosis (dinomitosis) wherein the nuclear envelope (NE) invaginates to form one or more trans-nuclear tunnels. Rather than contact spindles directly, the chromatids then bind to membrane-based kinetochores on the NE. To better understand these unique mitotic features, we reconstructed the nuclear architecture of Polykrikos kofoidii in 3D using focused ion beam scanning electron microscopy (FIB-SEM) in conjunction with high-pressure freezing, freeze-substitution, TEM, and confocal microscopy. We found that P. kofoidii possessed six nuclear tunnels, which were continuous with a reticulating network of membranes that has thus far gone unnoticed. These membranous extensions interconnect the six tunnels while ramifying throughout the nucleus to form a "nuclear net." To our knowledge, the nuclear net is the most elaborate endomembrane structure described within a nucleus. Our findings demonstrate the utility of tomographic approaches for detecting 3D membrane networks and show that nuclear complexity has been underestimated in Polykrikos kofoidii and, potentially, in other dinoflagellates
Distribution and Phylogeny of EFL and EF-1α in Euglenozoa Suggest Ancestral Co-Occurrence Followed by Differential Loss
BACKGROUND: The eukaryotic elongation factor EF-1alpha (also known as EF1A) catalyzes aminoacyl-tRNA binding by the ribosome during translation. Homologs of this essential protein occur in all domains of life, and it was previously thought to be ubiquitous in eukaryotes. Recently, however, a number of eukaryotes were found to lack EF-1alpha and instead encode a related protein called EFL (for EF-Like). EFL-encoding organisms are scattered widely across the tree of eukaryotes, and all have close relatives that encode EF-1alpha. This intriguingly complex distribution has been attributed to multiple lateral transfers because EFL's near mutual exclusivity with EF-1alpha makes an extended period of co-occurrence seem unlikely. However, differential loss may play a role in EFL evolution, and this possibility has been less widely discussed. METHODOLOGY/PRINCIPAL FINDINGS: We have undertaken an EST- and PCR-based survey to determine the distribution of these two proteins in a previously under-sampled group, the Euglenozoa. EF-1alpha was found to be widespread and monophyletic, suggesting it is ancestral in this group. EFL was found in some species belonging to each of the three euglenozoan lineages, diplonemids, kinetoplastids, and euglenids. CONCLUSIONS/SIGNIFICANCE: Interestingly, the kinetoplastid EFL sequences are specifically related despite the fact that the lineages in which they are found are not sisters to one another, suggesting that EFL and EF-1alpha co-occurred in an early ancestor of kinetoplastids. This represents the strongest phylogenetic evidence to date that differential loss has contributed to the complex distribution of EFL and EF-1alpha
Transcriptomic analysis reveals evidence for a cryptic plastid in the colpodellid Voromonas pontica, a close relative of chromerids and apicomplexan parasites.
Colpodellids are free-living, predatory flagellates, but their close relationship to photosynthetic chromerids and plastid-bearing apicomplexan parasites suggests they were ancestrally photosynthetic. Colpodellids may therefore retain a cryptic plastid, or they may have lost their plastids entirely, like the apicomplexan Cryptosporidium. To find out, we generated transcriptomic data from Voromonas pontica ATCC 50640 and searched for homologs of genes encoding proteins known to function in the apicoplast, the non-photosynthetic plastid of apicomplexans. We found candidate genes from multiple plastid-associated pathways including iron-sulfur cluster assembly, isoprenoid biosynthesis, and tetrapyrrole biosynthesis, along with a plastid-type phosphate transporter gene. Four of these sequences include the 5' end of the coding region and are predicted to encode a signal peptide and a transit peptide-like region. This is highly suggestive of targeting to a cryptic plastid. We also performed a taxon-rich phylogenetic analysis of small subunit ribosomal RNA sequences from colpodellids and their relatives, which suggests that photosynthesis was lost more than once in colpodellids, and independently in V. pontica and apicomplexans. Colpodellids therefore represent a valuable source of comparative data for understanding the process of plastid reduction in humanity's most deadly parasite
Maximum likelihood phylogeny of plastidic phosphate transporters.
<p>Support for nodes is indicated by % bootstrap support (out of 1000) in the ML analysis and by posterior probabilities from two Bayesian analyses, one employing the LG model of amino acids substitution, and the other using the CAT model (RAxML LG+Γ+F/Phylobayes LG+Γ/Phylobayes CAT+Γ), where greater than 50% bootstrap support or 0.9 posterior probability. Black dots on branches indicate full support from all three analyses for the adjacent node, i.e. 100/1.0/1.0. The subject of this study, <i>Voromonas pontica</i>, is indicated by white text on a black background. Experimentally apicoplast-localized proteins are indicated by bold text. Hatch marks indicate a branch whose length has been reduced by half. Aside from the primary plastid pPTs enclosed by the lower shaded box, all sequences belong to secondary, rhodophyte-derived plastids.</p
Maximum likelihood phylogeny of SufB amino acids sequences.
<p>Support for nodes is indicated by % bootstrap support (out of 1000) in the ML analysis and by posterior probabilities from two Bayesian analyses, one employing the LG model of amino acids substitution, and the other using the CAT model (RAxML LG+Γ+F/Phylobayes LG+Γ/Phylobayes CAT+Γ), where greater than 50% bootstrap support or 0.9 posterior probability. The subject of this study, <i>Voromonas pontica</i>, is indicated by white text on a black background. Hatch marks indicate branches whose lengths have been reduced by half.</p
Presence/absence of plastid-associated biosynthetic pathway enzymes sought in the <i>V. pontica</i> transcriptome.
<p>Presence/absence of plastid-associated biosynthetic pathway enzymes sought in the <i>V. pontica</i> transcriptome.</p