15 research outputs found

    Towards A Spatial Model of Rurality

    Get PDF
    The term rural is used to describe people, places, traditions, and spaces. It is often employed as a setting for study as well as an object of study. People’s perceptions of rural are confused and differ considerably. For over a century researchers have attempted to define more precisely this term using social, economic, and or ecological components. However, problems of interpreting official definitions and measurements exist. These definitions require extensions in order to capture a more objective meaning of the word. This thesis presents the foundations of a new approach to measuring and defining rurality. A spatial based approach is taken in which explicitly spatial data instead of social or economic data are collected and indexed. The index is divided into two clusters, a connectivity cluster and an access-to-service cluster. The indicators in the clusters are chosen based on a list of criteria taken from the Institute for International Development. The model employs mathematical foundations of both topology and metrics. The use of fuzzy measures to determine a degree of rurality, instead of classical set theory, enhances the model. A degree of connectivity, a degree of accessibility, and an overall degree of rurality is determined. The model also incorporates scale. The granularity of an indicator depends on a user-required level of detail. The data are manipulated and analyzed in a GIS. The spatial index is tested on a number of towns throughout Maine. A graphical user interface illustrates the results in an easy to understand format. The results of this thesis show that a spatial approach to defining rural extends formal definitions to capture a different facet of rurality, a degree of rurality. Furthermore, spatial, temporal and attribute queries are possible enabling users a choice given a particular task

    Whither Maine’s Population

    Get PDF
    Demographic changes affect many aspects of a state’s economic and community well-being. Mageean, AvRuskin and Sherwood describe some of the potential impacts of Maine’s changing population. They note that the state’s population is aging; the percentage of Maine’s youth is declining faster than in other New England states; and that rates of growth remain relatively slow throughout most counties. The authors describe each of these trends, and discuss the implications for Maine’s labor force, education and health care systems. They also note that these trends will not be experienced similarly by all parts of the state. While some counties may be faced with school closures, others should begin planning now for school expansions. Similarly, in order to take care of the state’s growing elderly population, rural, poorer areas may need to adopt different strategies from urban, more prosperous areas. The authors caution readers to interpret their population predictions carefully. While predictions on births and deaths are reasonably stable, migration trends are notoriously sensitive to economic conditions. Hence, much depends on the economic health of Maine and the region in the years to come

    Visualization and exploratory analysis of epidemiologic data using a novel space time information system

    Full text link
    Abstract Background Recent years have seen an expansion in the use of Geographic Information Systems (GIS) in environmental health research. In this field GIS can be used to detect disease clustering, to analyze access to hospital emergency care, to predict environmental outbreaks, and to estimate exposure to toxic compounds. Despite these advances the inability of GIS to properly handle temporal information is increasingly recognised as a significant constraint. The effective representation and visualization of both spatial and temporal dimensions therefore is expected to significantly enhance our ability to undertake environmental health research using time-referenced geospatial data. Especially for diseases with long latency periods (such as cancer) the ability to represent, quantify and model individual exposure through time is a critical component of risk estimation. In response to this need a STIS – a Space Time Information System has been developed to visualize and analyze objects simultaneously through space and time. Results In this paper we present a "first use" of a STIS in a case-control study of the relationship between arsenic exposure and bladder cancer in south eastern Michigan. Individual arsenic exposure is reconstructed by incorporating spatiotemporal data including residential mobility and drinking water habits. The unique contribution of the STIS is its ability to visualize and analyze residential histories over different temporal scales. Participant information is viewed and statistically analyzed using dynamic views in which values of an attribute change through time. These views include tables, graphs (such as histograms and scatterplots), and maps. In addition, these views can be linked and synchronized for complex data exploration using cartographic brushing, statistical brushing, and animation. Conclusion The STIS provides new and powerful ways to visualize and analyze how individual exposure and associated environmental variables change through time. We expect to see innovative space-time methods being utilized in future environmental health research now that the successful "first use" of a STIS in exposure reconstruction has been accomplished.http://deepblue.lib.umich.edu/bitstream/2027.42/112824/1/12942_2004_Article_41.pd

    Case-control geographic clustering for residential histories accounting for risk factors and covariates

    Get PDF
    BACKGROUND: Methods for analyzing space-time variation in risk in case-control studies typically ignore residential mobility. We develop an approach for analyzing case-control data for mobile individuals and apply it to study bladder cancer in 11 counties in southeastern Michigan. At this time data collection is incomplete and no inferences should be drawn – we analyze these data to demonstrate the novel methods. Global, local and focused clustering of residential histories for 219 cases and 437 controls is quantified using time-dependent nearest neighbor relationships. Business address histories for 268 industries that release known or suspected bladder cancer carcinogens are analyzed. A logistic model accounting for smoking, gender, age, race and education specifies the probability of being a case, and is incorporated into the cluster randomization procedures. Sensitivity of clustering to definition of the proximity metric is assessed for 1 to 75 k nearest neighbors. RESULTS: Global clustering is partly explained by the covariates but remains statistically significant at 12 of the 14 levels of k considered. After accounting for the covariates 26 Local clusters are found in Lapeer, Ingham, Oakland and Jackson counties, with the clusters in Ingham and Oakland counties appearing in 1950 and persisting to the present. Statistically significant focused clusters are found about the business address histories of 22 industries located in Oakland (19 clusters), Ingham (2) and Jackson (1) counties. Clusters in central and southeastern Oakland County appear in the 1930's and persist to the present day. CONCLUSION: These methods provide a systematic approach for evaluating a series of increasingly realistic alternative hypotheses regarding the sources of excess risk. So long as selection of cases and controls is population-based and not geographically biased, these tools can provide insights into geographic risk factors that were not specifically assessed in the case-control study design

    Improving exposure assessment in environmental epidemiology: Application of spatio-temporal visualization tools

    Full text link
    A thorough assessment of human exposure to environmental agents should incorporate mobility patterns and temporal changes in human behaviors and concentrations of contaminants; yet the temporal dimension is often under-emphasized in exposure assessment endeavors, due in part to insufficient tools for visualizing and examining temporal datasets. Spatio-temporal visualization tools are valuable for integrating a temporal component, thus allowing for examination of continuous exposure histories in environmental epidemiologic investigations. An application of these tools to a bladder cancer case-control study in Michigan illustrates continuous exposure life-lines and maps that display smooth, continuous changes over time. Preliminary results suggest increased risk of bladder cancer from combined exposure to arsenic in drinking water (>25 ÎĽ g/day) and heavy smoking (>30 cigarettes/day) in the 1970s and 1980s, and a possible cancer cluster around automotive, paint, and organic chemical industries in the early 1970s. These tools have broad application for examining spatially- and temporally-specific relationships between exposures to environmental risk factors and disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47931/1/10109_2005_Article_149.pd

    Global, local and focused geographic clustering for case-control data with residential histories

    Get PDF
    BACKGROUND: This paper introduces a new approach for evaluating clustering in case-control data that accounts for residential histories. Although many statistics have been proposed for assessing local, focused and global clustering in health outcomes, few, if any, exist for evaluating clusters when individuals are mobile. METHODS: Local, global and focused tests for residential histories are developed based on sets of matrices of nearest neighbor relationships that reflect the changing topology of cases and controls. Exposure traces are defined that account for the latency between exposure and disease manifestation, and that use exposure windows whose duration may vary. Several of the methods so derived are applied to evaluate clustering of residential histories in a case-control study of bladder cancer in south eastern Michigan. These data are still being collected and the analysis is conducted for demonstration purposes only. RESULTS: Statistically significant clustering of residential histories of cases was found but is likely due to delayed reporting of cases by one of the hospitals participating in the study. CONCLUSION: Data with residential histories are preferable when causative exposures and disease latencies occur on a long enough time span that human mobility matters. To analyze such data, methods are needed that take residential histories into account

    Case-control geographic clustering for residential histories accounting for risk factors and covariates

    No full text
    Abstract Background Methods for analyzing space-time variation in risk in case-control studies typically ignore residential mobility. We develop an approach for analyzing case-control data for mobile individuals and apply it to study bladder cancer in 11 counties in southeastern Michigan. At this time data collection is incomplete and no inferences should be drawn – we analyze these data to demonstrate the novel methods. Global, local and focused clustering of residential histories for 219 cases and 437 controls is quantified using time-dependent nearest neighbor relationships. Business address histories for 268 industries that release known or suspected bladder cancer carcinogens are analyzed. A logistic model accounting for smoking, gender, age, race and education specifies the probability of being a case, and is incorporated into the cluster randomization procedures. Sensitivity of clustering to definition of the proximity metric is assessed for 1 to 75 k nearest neighbors. Results Global clustering is partly explained by the covariates but remains statistically significant at 12 of the 14 levels of k considered. After accounting for the covariates 26 Local clusters are found in Lapeer, Ingham, Oakland and Jackson counties, with the clusters in Ingham and Oakland counties appearing in 1950 and persisting to the present. Statistically significant focused clusters are found about the business address histories of 22 industries located in Oakland (19 clusters), Ingham (2) and Jackson (1) counties. Clusters in central and southeastern Oakland County appear in the 1930's and persist to the present day. Conclusion These methods provide a systematic approach for evaluating a series of increasingly realistic alternative hypotheses regarding the sources of excess risk. So long as selection of cases and controls is population-based and not geographically biased, these tools can provide insights into geographic risk factors that were not specifically assessed in the case-control study design.</p

    Visualization and exploratory analysis of epidemiologic data using a novel space time information system

    Get PDF
    Abstract Background Recent years have seen an expansion in the use of Geographic Information Systems (GIS) in environmental health research. In this field GIS can be used to detect disease clustering, to analyze access to hospital emergency care, to predict environmental outbreaks, and to estimate exposure to toxic compounds. Despite these advances the inability of GIS to properly handle temporal information is increasingly recognised as a significant constraint. The effective representation and visualization of both spatial and temporal dimensions therefore is expected to significantly enhance our ability to undertake environmental health research using time-referenced geospatial data. Especially for diseases with long latency periods (such as cancer) the ability to represent, quantify and model individual exposure through time is a critical component of risk estimation. In response to this need a STIS – a Space Time Information System has been developed to visualize and analyze objects simultaneously through space and time. Results In this paper we present a "first use" of a STIS in a case-control study of the relationship between arsenic exposure and bladder cancer in south eastern Michigan. Individual arsenic exposure is reconstructed by incorporating spatiotemporal data including residential mobility and drinking water habits. The unique contribution of the STIS is its ability to visualize and analyze residential histories over different temporal scales. Participant information is viewed and statistically analyzed using dynamic views in which values of an attribute change through time. These views include tables, graphs (such as histograms and scatterplots), and maps. In addition, these views can be linked and synchronized for complex data exploration using cartographic brushing, statistical brushing, and animation. Conclusion The STIS provides new and powerful ways to visualize and analyze how individual exposure and associated environmental variables change through time. We expect to see innovative space-time methods being utilized in future environmental health research now that the successful "first use" of a STIS in exposure reconstruction has been accomplished.</p

    Residential Mobility and Breast Cancer in Marin County, California, USA

    Get PDF
    Marin County (California, USA) has among the highest incidences of breast cancer in the U.S. A previously conducted case-control study found eight significant risk factors in participants enrolled from 1997–1999. These included being premenopausal, never using birth control pills, lower highest lifetime body mass index, having four or more mammograms from 1990–1994, beginning drinking alcohol after age 21, drinking an average two or more alcoholic drinks per day, being in the highest quartile of pack-years of cigarette smoking, and being raised in an organized religion. Previously conducted surveys provided residential histories; while  statistic accounted for participants’ residential mobility, and assessed clustering of breast cancer cases relative to controls based on the known risk factors. These identified specific cases, places, and times of excess breast cancer risk. Analysis found significant global clustering of cases localized to specific residential histories and times. Much of the observed clustering occurred among participants who immigrated to Marin County. However, persistent case-clustering of greater than fifteen years duration was also detected. Significant case-clustering among long-term residents may indicate geographically localized risk factors not accounted for in the study design, as well as uncertainty and incompleteness in the acquired addresses. Other plausible explanations include environmental risk factors and cases tending to settle in specific areas. A biologically plausible exposure or risk factor has yet to be identified
    corecore