660 research outputs found

    Detection of Orbital Fluctuations Above the Structural Transition Temperature in the Iron-Pnictides and Chalcogenides

    Get PDF
    We use point contact spectroscopy to probe AEFe2As2\rm{AEFe_2As_2} (AE=Ca,Sr,Ba\rm{AE=Ca, Sr, Ba}) and Fe1+yTe\rm{Fe_{1+y}Te}. For AE=Sr,Ba\rm{AE=Sr, Ba} we detect orbital fluctuations above TST_S while for AE=Ca these fluctuations start below TST_S. Co doping preserves the orbital fluctuations while K doping suppresses it. The fluctuations are only seen at those dopings and temperatures where an in-plane resistive anisotropy is known to exist. We predict an in-plane resistive anisotropy of Fe1+yTe\rm{Fe_{1+y}Te} above TST_S. Our data are examined in light of the recent work by W.-C. Lee and P. Phillips (arXiv:1110.5917v2). We also study how joule heating in the PCS junctions impacts the spectra. Spectroscopic information is only obtained from those PCS junctions that are free of heating effects while those PCS junctions that are in the thermal regime display bulk resistivity phenomenon.Comment: Accepted for publication in Physical Review

    IMAPS Observations of Interstellar Neutral Argon and the Implications for Partially Ionized Gas

    Get PDF
    We use the absorption features from neutral argon at 1048 and 1066 A to determine interstellar abundances or their lower limits toward nine early-type stars. These features were observed with the Interstellar Medium Absorption Profile Spectrograph (IMAPS) along sight lines with low reddening and low fractional abundances of molecular hydrogen. We find that the interstellar Ar I is below its solar and B-star abundance with respect to hydrogen toward zeta Pup, gamma2 Vel and beta Cen A with (logarithmic) reduction factors -0.37+/-0.09, -0.18+/-0.10, and -0.61+/-0.12 dex, respectively. While Ar can condense onto the surfaces of dust grains in the interiors of dense clouds, it is unlikely that argon atoms are depleted by this process in the low-density lines of sight considered in this study. Instead, we propose that the relatively large photoionization cross section of Ar makes it much easier to hide in its ionized form than H. In regions that are about half ionized, this effect can lower Ar I/H I by -0.11 to -0.96 dex, depending on the energy of the photoionizing radiation and its intensity divided by the local electron density. We apply this interpretation for the condition of the gas in front of beta Cen A, which shows the largest deficiency of Ar. Also, we determine the expected magnitudes of the differential ionizations for He, N, O, Ne and Ar in the partly ionized, warm gas in the local cloud around our solar system. For the local cloud and others that can be probed by UV studies, the observed Ar I to H I ratio may be a good discriminant between two possible alternatives, collisional ionization or photoionization, for explaining the existence of partly ionized regions.Comment: 36 pages, 3 figure

    Point-contact spectroscopic studies on normal and superconducting AFe_2As_2-type iron-pnictide single crystals

    Full text link
    Point-contact Andreev reflection spectroscopy (PCARS) is applied to investigate the gap structure in iron pnictide single crystal superconductors of the AFe_2As_2 (A=Ba, Sr) family ("Fe-122"). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba_{0.6}K_{0.4})Fe_2As_2 and Ba(Fe_{0.9}Co_{0.1})_2As_2, and the other with a V^{2/3} background conductance universally observed extending even up to 100 meV for Sr_{0.6}Na_{0.4}Fe_2As_2 and Sr(Fe_{0.9}Co_{0.1})_2As_2. The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe_2As_2. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba_{0.6}K_{0.4}Fe_2As_2, double peaks due to Andreev reflection with strongly-sloping background are frequently observed for point-contacts on freshly-cleaved c-axis surfaces. If normalized by a background baseline and analyzed by the Blonder-Tinkham-Klapwijk model, the data show a gap size ~3.0-4.0 meV with 2\Delta_0/k_BT_c ~ 2.0-2.6, consistent with the smaller gap size reported in the LnFeAsO family ("Fe-1111"). For the Ba(Fe_{0.9}Co_{0.1})_2As_2, G(V) curves typically display a zero-bias conductance peak.Comment: 12 pages, 6 figure

    Quantum feedback control of a superconducting qubit: Persistent Rabi oscillations

    Full text link
    The act of measurement bridges the quantum and classical worlds by projecting a superposition of possible states into a single, albeit probabilistic, outcome. The time-scale of this "instantaneous" process can be stretched using weak measurements so that it takes the form of a gradual random walk towards a final state. Remarkably, the interim measurement record is sufficient to continuously track and steer the quantum state using feedback. We monitor the dynamics of a resonantly driven quantum two-level system -- a superconducting quantum bit --using a near-noiseless parametric amplifier. The high-fidelity measurement output is used to actively stabilize the phase of Rabi oscillations, enabling them to persist indefinitely. This new functionality shows promise for fighting decoherence and defines a path for continuous quantum error correction.Comment: Manuscript: 5 Pages and 3 figures ; Supplementary Information: 9 pages and 3 figure

    Electron spin resonance resolves intermediate triplet states in delayed fluorescence.

    Get PDF
    Molecular organic fluorophores are currently used in organic light-emitting diodes, though non-emissive triplet excitons generated in devices incorporating conventional fluorophores limit the efficiency. This limit can be overcome in materials that have intramolecular charge-transfer excitonic states and associated small singlet-triplet energy separations; triplets can then be converted to emissive singlet excitons resulting in efficient delayed fluorescence. However, the mechanistic details of the spin interconversion have not yet been fully resolved. We report transient electron spin resonance studies that allow direct probing of the spin conversion in a series of delayed fluorescence fluorophores with varying energy gaps between local excitation and charge-transfer triplet states. The observation of distinct triplet signals, unusual in transient electron spin resonance, suggests that multiple triplet states mediate the photophysics for efficient light emission in delayed fluorescence emitters. We reveal that as the energy separation between local excitation and charge-transfer triplet states decreases, spin interconversion changes from a direct, singlet-triplet mechanism to an indirect mechanism involving intermediate states

    Pressure effects on the electron-doped high Tc superconductor BaFe(2-x)Co(x)As(2)

    Full text link
    Application of pressures or electron-doping through Co substitution into Fe sites transforms the itinerant antiferromagnet BaFe(2)As(2) into a superconductor with the Tc exceeding 20K. We carried out systematic transport measurements of BaFe(2-x)Co(x)As(2) superconductors in pressures up to 2.5GPa, and elucidate the interplay between the effects of electron-doping and pressures. For the underdoped sample with nominal composition x = 0.08, application of pressure strongly suppresses a magnetic instability while enhancing Tc by nearly a factor of two from 11K to 21K. In contrast, the optimally doped x=0.20 sample shows very little enhancement of Tc=22K under applied pressure. Our results strongly suggest that the proximity to a magnetic instability is the key to the mechanism of superconductivity in iron-pnictides.Comment: 5 figure

    Distorted magnetic orders and electronic structures of tetragonal FeSe from first-principles

    Full text link
    We use the state-of-the-arts density-functional-theory method to study various magnetic orders and their effects on the electronic structures of the FeSe. Our calculated results show that, for the spins of the single Fe layer, the striped antiferromagnetic orders with distortion are more favorable in total energy than the checkerboard antiferromagnetic orders with tetragonal symmetry, which is consistent with known experimental data, and the inter-layer magnetic interaction is very weak. We investigate the electronic structures and magnetic property of the distorted phases. We also present our calculated spin coupling constants and discuss the reduction of the Fe magnetic moment by quantum many-body effects. These results are useful to understand the structural, magnetic, and electronic properties of FeSe, and may have some helpful implications to other FeAs-based materials
    • …
    corecore