157 research outputs found

    c-myc, not her-2/neu, can predict the prognosis of breast cancer patients: how novel, how accurate, and how significant?

    Get PDF
    The predictive and prognostic implication of oncogene amplification in breast cancer has received great attention in the past two decades. her-2/neu and c-myc are two oncogenes that are frequently amplified and overexpressed in breast carcinomas. Despite the extensive data on these oncogenes, their prognostic and predictive impact on breast cancer patients remains controversial. Schlotter and colleagues have recently suggested that c-myc, and not her-2/neu, could predict the recurrence and mortality of patients with node-negative breast carcinomas. Regardless of the promising results, caution should be exercised in the interpretation of data from studies assessing gene amplification without in situ analysis. We address the novelty, accuracy and clinical significance of the study by Schlotter and colleagues

    The geography of recent genetic ancestry across Europe

    Get PDF
    The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.Comment: Full size figures available from http://www.eve.ucdavis.edu/~plralph/research.html; or html version at http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm

    A planetary system as the origin of structure in Fomalhaut's dust belt

    Full text link
    The Sun and >15 percent of nearby stars are surrounded by dusty debris disks that must be collisionally replenished by asteroids and comets, as the dust would otherwise be depleted on <10 Myr timescales (ref. 1). Theoretical studies show that disk structure can be modified by the gravitational influence of planets (ref. 2-4), but the observational evidence is incomplete, at least in part because maps of the thermal infrared emission from disks have low linear resolution (35 AU in the best case; ref. 5). Optical images provide higher resolution, but the closest examples (AU Mic and Beta Pic) are edge-on (ref. 6,7), preventing the direct measurement of azimuthal and radial disk structure that is required for fitting theoretical models of planetary perturbations. Here we report the detection of optical light reflected from the dust grains orbiting Fomalhaut (HD 216956). The system is inclined 24 degrees away from edge-on, enabling the measurement of disk structure around its entire circumference, at a linear resolution of 0.5 AU. The dust is distributed in a belt 25 AU wide, with a very sharp inner edge at a radial distance of 133 AU, and we measure an offset of 15 AU between the belt's geometric centre and Fomalhaut. Taken together, the sharp inner edge and offset demonstrate the presence of planet-mass objects orbiting Fomalhaut.Comment: 8 pages, 3 figures, 1 tabl

    Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray

    Get PDF
    Aberrations in the GI/S transition of the cell cycle have been observed in many malignancies and seem to be critical in the transformation process. Few studies have delineated the presence of GI/S regulatory defects and their clinical relevance in renal cell carcinoma (RCC). Therefore, we have examined the protein contents of cyclin D 1, D3, E, and p27 in 218 RCCs, using tissue microarray and immunohistochemistry. The results from a subset of tumours were confirmed by Western blotting and immunohistochemical staining of regular tissue sections. Interestingly, low protein contents of cyclin D I and p27 were associated with high nuclear grade, large tumour size, and poor prognosis for patients with conventional tumours. We further observed substantial differences in the pattern of GI/S regulatory defects between the different RCC subtypes. The majority of both conventional and papillary cases expressed p27; however, chromophobe tumours generally lacked p27 staining. In addition, conventional RCCs often expressed high cyclin DI protein levels, while papillary RCCs exhibited high cyclin E. In summary, we have shown that GI/S regulatory defects are present in RCC and are associated with clinico-pathological parameters. The pattern of cell cycle regulatory defects also differed between RCC subtypes. (C) 2003 Cancer Research UK

    PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro

    Get PDF
    Abstract Introduction Alterations in cell cycle regulators have been implicated in human malignancies including breast cancer. PD 0332991 is an orally active, highly selective inhibitor of the cyclin D kinases (CDK)4 and CDK6 with ability to block retinoblastoma (Rb) phosphorylation in the low nanomolar range. To identify predictors of response, we determined the in vitro sensitivity to PD 0332991 across a panel of molecularly characterized human breast cancer cell lines. Methods Forty-seven human breast cancer and immortalized cell lines representing the known molecular subgroups of breast cancer were treated with PD 0332991 to determine IC50 values. These data were analyzed against baseline gene expression data to identify genes associated with PD 0332991 response. Results Cell lines representing luminal estrogen receptor-positive (ER+) subtype (including those that are HER2 amplified) were most sensitive to growth inhibition by PD 0332991 while nonluminal/basal subtypes were most resistant. Analysis of variance identified 450 differentially expressed genes between sensitive and resistant cells. pRb and cyclin D1 were elevated and CDKN2A (p16) was decreased in the most sensitive lines. Cell cycle analysis showed G0/G1 arrest in sensitive cell lines and Western blot analysis demonstrated that Rb phosphorylation is blocked in sensitive lines but not resistant lines. PD 0332991 was synergistic with tamoxifen and trastuzumab in ER+ and HER2-amplified cell lines, respectively. PD 0332991 enhanced sensitivity to tamoxifen in cell lines with conditioned resistance to ER blockade. Conclusions These studies suggest a role for CDK4/6 inhibition in some breast cancers and identify criteria for patient selection in clinical studies of PD 0332991

    Access to Reliable Information about Long-Term Prognosis Influences Clinical Opinion on Use of Lifesaving Intervention

    Get PDF
    Background: Decompressive craniectomy has been traditionally used as a lifesaving rescue treatment in severe traumatic brain injury (TBI). This study assessed whether objective information on long-term prognosis would influence healthcare workers ’ opinion about using decompressive craniectomy as a lifesaving procedure for patients with severe TBI. Method: A two-part structured interview was used to assess the participants ’ opinion to perform decompressive craniectomy for three patients who had very severe TBI. Their opinion was assessed before and after knowing the predicted and observed risks of an unfavourable long-term neurological outcome in various scenarios. Results: Five hundred healthcare workers with a wide variety of clinical backgrounds participated. The participants were significantly more likely to recommend decompressive craniectomy for their patients than for themselves (mean difference in visual analogue scale [VAS] 21.5, 95 % confidence interval 21.3 to 21.6), especially when the next of kin of the patients requested intervention. Patients ’ preferences were more similar to patients who had advance directives. The participants’ preferences to perform the procedure for themselves and their patients both significantly reduced after knowing the predicted risks of unfavourable outcomes, and the changes in attitude were consistent across different specialties, amount of experience in caring for similar patients, religious backgrounds, and positions in the specialty of the participants. Conclusions: Access to objective information on risk of an unfavourable long-term outcome influenced healthcare workers

    Spindle Assembly Checkpoint Regulates Mitotic Cell Cycle Progression during Preimplantation Embryo Development

    Get PDF
    Errors in chromosome segregation or distribution may result in aneuploid embryo formation, which causes implantation failure, spontaneous abortion, genetic diseases, or embryo death. Embryonic aneuploidy occurs when chromosome aberrations are present in gametes or early embryos. To date, it is still unclear whether the spindle assembly checkpoint (SAC) is required for the regulation of mitotic cell cycle progression to ensure mitotic fidelity during preimplantation development. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of SAC components (Bub3, BubR1 and Mad2) in mouse preimplantation embryos. Our data showed that overexpressed SAC components inhibited metaphase-anaphase transition by preventing sister chromatid segregation. Deletion of SAC components by RNAi accelerated the metaphase-anaphase transition during the first cleavage and caused micronuclei formation, chromosome misalignment and aneuploidy, which caused decreased implantation and delayed development. Furthermore, in the presence of the spindle-depolymerizing drug nocodazole, SAC depleted embryos failed to arrest at metaphase. Our results suggest that SAC is essential for the regulation of mitotic cell cycle progression in cleavage stage mouse embryos

    Primary biliary cirrhosis and autoimmune cholangitis are not associated with coeliac disease in Crete

    Get PDF
    BACKGROUND: An increased prevalence of coeliac disease in patients with primary biliary cirrhosis has been recently reported. However, in other studies the association has not been confirmed. There have been no formal attempts to systematically evaluate patients with autoimmune cholangitis for coeliac disease. METHODS: Sera from 62 patients with primary biliary cirrhosis, 17 with autoimmune cholangitis and 100 blood donors were screened for anti-gliadin, anti-endomysial, anti-reticulin, and IgA class antibodies to guinea pig liver-derived tissue transglutaminase. Eighteen untreated coeliacs served as methodological controls. Analyses were performed by using the Ο‡(2) and Fischer's exact tests. RESULTS: Anti-gliadin antibodies were detected in 21% of patients with primary biliary cirrhosis, 35% of patients with autoimmune cholangitis, and 3% of controls (p < 0.001). IgA class gliadin antibodies positivity was more pronounced in patients with Scheuer's stage III-IV disease (p < 0.05). Anti-transglutaminase antibodies were detected in 10% and in 18% of patients with primary biliary cirrhosis and autoimmune cholangitis respectively (p < 0.001). Anti-reticulin and anti-endomysial antibodies were negative in all patients. Duodenal biopsies were performed in 59% and 71% of patients with primary biliary cirrhosis and autoimmune cholangitis respectively, tested positive for at least one antibody class. No histological features of coeliac disease were found. CONCLUSIONS: We were unable to demonstrate an increased risk of coeliac disease in patients with primary biliary cirrhosis and autoimmune cholangitis. Our results confirm the previously reported high prevalence of false-positive anti-gliadin and guinea pig liver-derived anti-tissue transglutaminase antibodies in patients with chronic liver disease

    Reverse Engineering of the Spindle Assembly Checkpoint

    Get PDF
    The Spindle Assembly Checkpoint (SAC) is an intracellular mechanism that ensures proper chromosome segregation. By inhibiting Cdc20, a co-factor of the Anaphase Promoting Complex (APC), the checkpoint arrests the cell cycle until all chromosomes are properly attached to the mitotic spindle. Inhibition of Cdc20 is mediated by a conserved network of interacting proteins. The individual functions of these proteins are well characterized, but understanding of their integrated function is still rudimentary. We here describe our attempts to reverse-engineer the SAC network based on gene deletion phenotypes. We begun by formulating a general model of the SAC which enables us to predict the rate of chromosomal missegregation for any putative set of interactions between the SAC proteins. Next the missegregation rates of seven yeast strains are measured in response to the deletion of one or two checkpoint proteins. Finally, we searched for the set of interactions that correctly predicted the observed missegregation rates of all deletion mutants. Remarkably, although based on only seven phenotypes, the consistent network we obtained successfully reproduces many of the known properties of the SAC. Further insights provided by our analysis are discussed

    Cyclin A is a prognostic indicator in early stage breast cancer with and without tamoxifen treatment

    Get PDF
    Overexpression of G1-S regulators cyclin D1 or cyclin A is frequently observed in breast cancer and is also to result in ligand-independent activation of oestrogen receptor in vitro. This might therefore, provide a mechanism for failure of tamoxifen treatment. We examined by immunohistochemical staining the effect of deregulation of these, and other cell cycle regulators on tamoxifen treatment in a group of 394 patients with early stage breast cancer. In univariate analysis, expression of cyclin A, Neu, Ki-67 index, and lack of OR expression were significantly associated with worse prognosis. When adjusted by the clinical model (for lymph node status, age, performance status, T-classification, grade, prior surgery, oestrogen receptor status and tamoxifen use), only overexpression of cyclin A and Neu were significantly associated with worse prognosis with hazard ratios of, respectively, 1.709 (P=0.0195) and 1.884 (P=0.0151). Overexpression of cyclin A was found in 86 out of the 201 OR-positive cases treated with tamoxifen, and was the only independent marker associated with worse prognosis (hazard ratio 2.024, P=0.0462). In conclusion, cyclin A is an independent predictor of recurrence of early stage breast cancer and is as such a marker for response in patients treated with tamoxifen
    • …
    corecore