463 research outputs found

    Correcting the Site Frequency Spectrum for Divergence-Based Ascertainment

    Get PDF
    Comparative genomics based on sequenced referenced genomes is essential to hypothesis generation and testing within population genetics. However, selection of candidate regions for further study on the basis of elevated or depressed divergence between species leads to a divergence-based ascertainment bias in the site frequency spectrum within selected candidate loci. Here, a method to correct this problem is developed that obtains maximum-likelihood estimates of the unascertained allele frequency distribution using numerical optimization. I show how divergence-based ascertainment may mimic the effects of natural selection and offer correction formulae for performing proper estimation into the strength of selection in candidate regions in a maximum-likelihood setting

    Evidence for variation in the effective population size of animal mitochondrial DNA

    Get PDF
    Background: It has recently been shown that levels of diversity in mitochondrial DNA are remarkably constant across animals of diverse census population sizes and ecologies, which has led to the suggestion that the effective population of mitochondrial DNA may be relatively constant. Results: Here we present several lines of evidence that suggest, to the contrary, that the effective population size of mtDNA does vary, and that the variation can be substantial. First, we show that levels of mitochondrial and nuclear diversity are correlated within all groups of animals we surveyed. Second, we show that the effectiveness of selection on non-synonymous mutations, as measured by the ratio of the numbers of non-synonymous and synonymous polymorphisms, is negatively correlated to levels of mitochondrial diversity. Finally, we estimate the effective population size of mitochondrial DNA in selected mammalian groups and show that it varies by at least an order of magnitude. Conclusions: We conclude that there is variation in the effective population size of mitochondria. Furthermore we suggest that the relative constancy of DNA diversity may be due to a negative correlation between the effective population size and the mutation rate per generation

    Simple, Fast and Accurate Implementation of the Diffusion Approximation Algorithm for Stochastic Ion Channels with Multiple States

    Get PDF
    The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled activation subunits, while the DA was modeled using uncoupled activation subunits. Implementations of DA with coupled subunits, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable - allowing an easy and efficient DA implementation. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods.Comment: 32 text pages, 10 figures, 1 supplementary text + figur

    Cooperative secretions facilitate host range expansion in bacteria

    Get PDF
    The majority of emergent human pathogens are zoonotic in origin, that is, they can transmit to humans from other animals. Understanding the factors underlying the evolution of pathogen host range is therefore of critical importance in protecting human health. There are two main evolutionary routes to generalism: organisms can tolerate multiple environments or they can modify their environments to forms to which they are adapted. Here we use a combination of theory and a phylogenetic comparative analysis of 191 pathogenic bacterial species to show that bacteria use cooperative secretions that modify their environment to extend their host range and infect multiple host species. Our results suggest that cooperative secretions are key determinants of host range in bacteria, and that monitoring for the acquisition of secreted proteins by horizontal gene transfer can help predict emerging zoonoses

    Growth dynamics and the evolution of cooperation in microbial populations

    Get PDF
    Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of colonies, promote cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and size of population bottlenecks, and growth dynamics to be the major ecological factors determining the regimes and thereby the evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure

    Expression of an Epitope-Tagged Virulence Protein in Rickettsia parkeri Using Transposon Insertion

    Get PDF
    Despite recent advances in our ability to genetically manipulate Rickettsia, little has been done to employ genetic tools to study the expression and localization of Rickettsia virulence proteins. Using a mariner-based Himar1 transposition system, we expressed an epitope-tagged variant of the actin polymerizing protein RickA under the control of its native promoter in Rickettsia parkeri, allowing the detection of RickA using commercially-available antibodies. Native RickA and epitope-tagged RickA exhibited similar levels of expression and were specifically localized to bacteria. To further facilitate protein expression in Rickettsia, we also developed a plasmid for Rickettsia insertion and expression (pRIE), containing a variant Himar1 transposon with enhanced flexibility for gene insertion, and used it to generate R. parkeri strains expressing diverse fluorescent proteins. Expression of epitope-tagged proteins in Rickettsia will expand our ability to assess the regulation and function of important virulence factors

    Predictability of evolutionary trajectories in fitness landscapes

    Get PDF
    Experimental studies on enzyme evolution show that only a small fraction of all possible mutation trajectories are accessible to evolution. However, these experiments deal with individual enzymes and explore a tiny part of the fitness landscape. We report an exhaustive analysis of fitness landscapes constructed with an off-lattice model of protein folding where fitness is equated with robustness to misfolding. This model mimics the essential features of the interactions between amino acids, is consistent with the key paradigms of protein folding and reproduces the universal distribution of evolutionary rates among orthologous proteins. We introduce mean path divergence as a quantitative measure of the degree to which the starting and ending points determine the path of evolution in fitness landscapes. Global measures of landscape roughness are good predictors of path divergence in all studied landscapes: the mean path divergence is greater in smooth landscapes than in rough ones. The model-derived and experimental landscapes are significantly smoother than random landscapes and resemble additive landscapes perturbed with moderate amounts of noise; thus, these landscapes are substantially robust to mutation. The model landscapes show a deficit of suboptimal peaks even compared with noisy additive landscapes with similar overall roughness. We suggest that smoothness and the substantial deficit of peaks in the fitness landscapes of protein evolution are fundamental consequences of the physics of protein folding.Comment: 14 pages, 7 figure

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
    • …
    corecore