157 research outputs found

    The glow of primordial remnants

    Full text link
    We determine the expected surface brightness and photometric signature of a white dwarf remnant population, issued from primordial low-mass stars formed at high redshifts, in today galactic halos. We examine the radial dependence of such a contribution as well as its redshift dependence. Such a halo diffuse radiation is below the detection limit of present large field ground-based surveys, but should be observable with the HST and with the future JWST project. Since the surface brightness does not depend on the distance, the integration of several galactic dark halos along the line of sight will raise appreciably the chances of detection. Both the detection or the non-detection of such a remnant diffuse radiation within relevant detection limits offer valuable information on the minimum mass for star formation in the early universe and on the evolution of the stellar initial mass function.Comment: 8 pages, 6 figures, to be published in Ap

    Free-energy model for fluid helium at high density

    Full text link
    We present a semi-analytical free-energy model aimed at characterizing the thermodynamic properties of dense fluid helium, from the low-density atomic phase to the high-density fully ionized regime. The model is based on a free-energy minimization method and includes various different contributions representative of the correlations between atomic and ionic species and electrons. This model allows the computation of the thermodynamic properties of dense helium over an extended range of density and temperature and leads to the computation of the phase diagram of dense fluid helium, with its various temperature and pressure ionization contours. One of the predictions of the model is that pressure ionization occurs abruptly at \rho \simgr 10 g cm3^{-3}, {\it i.e.} P\simgr 20 Mbar, from atomic helium He to fully ionized helium He2+^{2+}, or at least to a strongly ionized state, without He+^{+} stage, except at high enough temperature for temperature ionization to become dominant. These predictions and this phase diagram provide a guide for future dynamical experiments or numerical first-principle calculations aimed at studying the properties of helium at very high density, in particular its metallization. Indeed, the characterization of the helium phase diagram bears important consequences for the thermodynamic, magnetic and transport properties of cool and dense astrophysical objects, among which the solar and the numerous recently discovered extrasolar giant planets.Comment: Accepted for publication in Phys. Rev.

    Effect of episodic accretion on the structure and the lithium depletion of low-mass stars and planet-hosting stars

    Get PDF
    Following up our recent analysis devoted to the impact of non steady accretion on the location of young low-mass stars or brown dwarfs in the Herzsprung-Russell diagram, we perform a detailed analysis devoted to the effect of burst accretion on the internal structure of low-mass and solar type stars. We find that episodic accretion can produce objects with significantly higher central temperatures than the ones of the non accreting counterparts of same mass and age. As a consequence, lithium depletion can be severely enhanced in these objects. This provides a natural explanation for the unexpected level of lithium depletion observed in young objects for the inferred age of their parent cluster. These results confirm the limited reliability of lithium abundance as a criterion for assessing or rejecting cluster membership. They also show that lithium is not a reliable age indicator, because its fate strongly depends on the past accretion history of the star. Under the assumption that giant planets primarily form in massive disks prone to gravitational instability and thus to accretion burst episodes, the same analysis also explains the higher Li depletion observed in planet hosting stars. At last, we show that, depending on the burst rate and intensity, accretion outbursts can produce solar mass stars with lower convective envelope masses, at ages less than a few tens of Myr, than predicted by standard (non or slowly accreting) pre-main sequence models. This result has interesting, although speculative, implications for the recently discovered depletion of refractory elements in the Sun.Comment: 8 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Analytical theory for the initial mass function: III time dependence and star formation rate

    Full text link
    The present paper extends our previous theory of the stellar initial mass function (IMF) by including the time-dependence, and by including the impact of magnetic field. The predicted mass spectra are similar to the time independent ones with slightly shallower slopes at large masses and peak locations shifted toward smaller masses by a factor of a few. Assuming that star-forming clumps follow Larson type relations, we obtain core mass functions in good agreement with the observationally derived IMF, in particular when taking into account the thermodynamics of the gas. The time-dependent theory directly yields an analytical expression for the star formation rate (SFR) at cloud scales. The SFR values agree well with the observational determinations of various Galactic molecular clouds. Furthermore, we show that the SFR does not simply depend linearly on density, as sometimes claimed in the literature, but depends also strongly on the clump mass/size, which yields the observed scatter. We stress, however, that {\it any} SFR theory depends, explicitly or implicitly, on very uncertain assumptions like clump boundaries or the mass of the most massive stars that can form in a given clump, making the final determinations uncertain by a factor of a few. Finally, we derive a fully time-dependent model for the IMF by considering a clump, or a distribution of clumps accreting at a constant rate and thus whose physical properties evolve with time. In spite of its simplicity, this model reproduces reasonably well various features observed in numerical simulations of converging flows. Based on this general theory, we present a paradigm for star formation and the IMF.Comment: accepted for publication in Ap

    On the role of the H2 ortho:para ratio in gravitational collapse during star formation

    Full text link
    Hydrogen molecules (H2) come in two forms in the interstellar medium, ortho- and para-hydrogen, corresponding to the two different spin configurations of the two hydrogen atoms. The relative abundances of the two flavours in the interstellar medium are still very uncertain, and this abundance ratio has a significant impact on the thermal properties of the gas. In the context of star formation, theoretical studies have recently adopted two different strategies when considering the ortho:para ratio (OPR) of H2 molecules; the first considers the OPR to be frozen at 3:1 while the second assumes that the species are in thermal equilibrium. As the OPR potentially affects the protostellar cores which form as a result of the gravitational collapse of a dense molecular cloud, the aim of this paper is to quantify precisely what role the choice of OPR plays in the properties and evolution of the cores. We used two different ideal gas equations of state for a hydrogen and helium mix in a radiation hydrodynamics code to simulate the collapse of a dense cloud and the formation of the first and second Larson cores; the first equation of state uses a fixed OPR of 3:1 while the second assumes thermal equilibrium. Simulations using an equilibrium ratio collapse faster at early times and show noticeable oscillations around hydrostatic equilibrium, to the point where the core expands for a short time right after its formation before resuming its contraction. In the case of a fixed 3:1 OPR, the core's evolution is a lot smoother. The OPR was however found to have little impact on the size, mass and radius of the two Larson cores. We conclude that if one is solely interested in the final properties of the cores when they are formed, it does not matter which OPR is used. On the other hand, if one's focus lies primarily in the evolution of the first core, the choice of OPR becomes important.Comment: 9 pages, 5 figures. Accepted for publication in Astronomy & Astrophysic
    corecore