10,056 research outputs found

    Highly sensitive frequency metrology for optical anisotropy measurements

    Full text link
    In this paper we present a novel apparatus aimed at measuring very small birefringences and anisotropies, based on frequency metrology and not on polarimetry as usual. In our experiment, a very high finesse resonant cavity is used to convert the phase difference into a resonance frequency difference, which can then be measured with very high accuracy. We describe the set-up and present the results of experimental tests which exhibited a sensitivity dn ~ 2 x 10?18, allowing for the measurement of long-predicted magneto-electro-optical effects in gases. Since the shotnoise limited sensitivity of our apparatus lies well below the state-of-the-art sensitivity, frequency metrology appears as a promising technique for small birefringence measurements.Comment: Accepted for publication in Review of Scientific Instrument

    Atmospheric Propagation

    Get PDF
    Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency

    Application of Peptides Containing the Cleavage Sequence of Pro-TNFα in Assessing TACE Activity of Whole Cells

    Get PDF
    Tumor necrosis factor-α (TNFα) is presumably shed from cell membranes by TNFα-cleaving enzyme (TACE). The peptides SPLAQAVRSSSR and Dabcyl-LAQAVRSSSR-Edans, each encompassing the cleavage sequence of pro-TNFα recognized by TACE, were applied to intact umbilical vein endothelium (HUVEC), peripheral blood leukocytes (PBL) and the mast cell line HMC-1, which express TACE, to homogenates of rat heart tissue and to membrane and cytoplasmic extracts of PBL. Formation of SPLAQA (specific cleavage) was determined by HPLC, while cleavage (specific plus non-specific) of Dabcyl-TNFα-Edans was followed over time by measuring fluorescence. Participation of TACE was assessed from inhibition due to the drug TAPI-2. Incubation with recombinant human TACE gave specific cleavage, fully inhibitable by TAPI-2 (IC50<0.1 μM). HUVEC rapidly degraded TNFα-peptide, but in a non-specific manner (no SPLAQA detectable) and 50 μM TAPI-2 was without effect. Fluorescence was evoked when Dabcyl- LAQAVRSSSR-Edans was incubated with HMC-1 or PBL and also with cytoplasmic and membrane fractions of lysed PBL, but in no case was there significant inhibition by TAPI-2. However, marginal (10%) inhibition of fluorescence by 50 μM TAPI-2 was observed with homogenized heart tissue. This contained TACE, about 75% of which was without the inhibitory cysteine switch (Western blot). In conclusion, simple peptide analogs of pro-TNFα cannot be employed as substrates for measuring membrane TACE activity, largely due to extensive non-specific proteolytic cleavage by whole cells and cell extracts

    Release of TNF-α during myocardial reperfusion depends on oxidative stress and is prevented by mast cell stabilizers

    Get PDF
    Objectives: Our study sought to elucidate the role of oxidative stress for shedding of tumor necrosis factor-α (TNF-α) and for activating TNF-α-converting enzyme (TACE). Background: TNF-α, a central inflammatory cytokine, is discussed as one of the mediators of reperfusion injury. Shedding of membrane-bound pro-TNF-α is thought to be largely due to TNF-α-converting enzyme (TACE). Methods: Release of TNF-α and TACE dependency were studied in isolated rat hearts and in the human mast cell line HMC-1. Results: In reperfused hearts, interstitial release of TNF-α occurred in two phases (2–10 and >45 min). It depended on the presence of oxygen during reperfusion and was attenuated by reduced glutathione. Infusion of the oxidants H2O2 or HOCl elicited release in non-ischemic hearts. TNF-α release was inhibited in hearts treated with degranulation inhibitors ketotifen or cromoglycate, suggesting mast cells as major source for myocardial TNF-α. This was confirmed by tissue staining. Post-ischemic release of histamine, however, did not parallel that of TNF-α. Heart tissue contained mainly mature TACE. HMC-1 expressed abundant pro-TACE and cleaved the pro-TNF-α-peptide Ac-SPLAQAVRSSSR-NH2. However, cleavage was nonspecific and only partly inhibited by TACE inhibitor TAPI-2 (10–100 μmol/l), while it was stimulated by H2O2 and HOCl and fully blocked by the nonspecific metalloprotease inhibitor o-phenanthroline. Conclusions: The mechanism underlying TNF-α release from post-ischemic myocardium is oxidation-dependent but largely independent of activation of TACE. Mast cell stabilizers may be useful in preventing TNF-α release during reperfusion

    It\u27s Not a Gotcha : Interpreting Teacher Evaluation Policy in Rural School District

    Get PDF
    This multi-case study explored how local policy actors in rural school districts interpreted new teacher evaluation policies and how state-level policy actors influenced local policy responses. In the first phase of the study, teachers and administrators in four rural school districts in two U.S. states were interviewed about new state teacher evaluation policies and their own local efforts to meet policy demands, while the study’s second phase investigated the work of state-level policy actors. Shedding light on the realities of tackling reform mandates in rural schools, the study finds that teacher evaluation policy efforts are challenged by the tension between the formative and summative purposes of teacher evaluation, that teacher evaluation policies allowing local control in system design require a significant commitment at the local level, that local actors rely on and value the work of policy intermediaries, and that interpreting teacher evaluation policy and planning for implementation can be particularly challenging in small rural school districts

    Chaining of welding and finish turning simulations for austenitic stainless steel components

    Get PDF
    The chaining of manufacturing processes is a major issue for industrials who want to understand and control the quality of their products in order to ensure their in-service integrity (surface integrity, residual stresses, microstructure, metallurgical changes, distortions,…). Historically, welding and machining are among the most studied processes and dedicated approaches of simulation have been developed to provide reliable and relevant results in an industrial context with safety requirements. As the simulation of these two processes seems to be at an operationnal level, the virtual chaining of both must now be applied with a lifetime prediction prospect. This paper will first present a robust method to simulate multipass welding processes that has been validated through an international round robin. Then the dedicated “hybrid method”, specifically set up to simulate finish turning, will be subsequently applied to the welding simulation so as to reproduce the final state of the pipe manufacturing and its interaction with previous operations. Final residual stress fields will be presented and compared to intermediary results obtained after welding. The influence of each step on the final results will be highlighted regarding surface integrity and finally ongoing validation works and numerical modeling enhancements will be discussed

    Modeling of plastic anisotropy with reduced polycrystalline models. Application to aluminum alloys

    No full text
    From the issue entitled "Proceedings of the 11th ESAFORM Conference on Material Forming, Lyon (France), 23-25 April 2008, edited by P. Boisse, F. Morestin, E. Vidal-Sallé, LaMCoS, INSA de Lyon)"International audienceThe modeling of deviations from isotropic hardening still is a difficult task for macroscopic models, in particular for non-proportional loading paths. The alternative polycrystalline models suffer from large CPU time in FE analyses and do not always give simultaneously a good description of flow stresses and transverse strain rates. Due to a specific parameter calibration procedure, a “reduced” polycrystalline model with 8 orientations only is in excellent agreement with all experimental curves for a 2090-T3 aluminum sheet. FE calculations of a punch test with contact and friction give CPU times only 15% larger than with a macroscopic model

    Noise and thermal stability of vibrating micro-gyrometers preamplifiers

    Get PDF
    The preamplifier is a critical component of gyrometer's electronics. Indeed the resolution of the sensor is limited by its signal to noise ratio, and the gyrometer's thermal stability is limited by its gain drift. In this paper, five different kinds of preamplifiers are presented and compared. Finally, the design of an integrated preamplifier is shown in order to increase the gain stability while reducing its noise and size.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Two-loop Functional Renormalization Group of the Random Field and Random Anisotropy O(N) Models

    Full text link
    We study by the perturbative Functional Renormalization Group (FRG) the Random Field and Random Anisotropy O(N) models near d=4d=4, the lower critical dimension of ferromagnetism. The long-distance physics is controlled by zero-temperature fixed points at which the renormalized effective action is nonanalytic. We obtain the beta functions at 2-loop order, showing that despite the nonanalytic character of the renormalized effective action, the theory is perturbatively renormalizable at this order. The physical results obtained at 2-loop level, most notably concerning the breakdown of dimensional reduction at the critical point and the stability of quasi-long range order in d<4d<4, are shown to fit into the picture predicted by our recent non-perturbative FRG approach.Comment: 19 pages, 20 figures. Minor correction
    • …
    corecore