3 research outputs found

    Precision measurement of cis-regulatory energetics in living cells

    Get PDF
    Gene expression in all organisms is controlled by cooperative interactions between DNA-bound transcription factors (TFs). However, measuring TF-TF interactions that occur at individual cis-regulatory sequences remains difficult. Here we introduce a strategy for precisely measuring the Gibbs free energy of such interactions in living cells. Our strategy uses reporter assays performed on strategically designed cis-regulatory sequences, together with a biophysical modeling approach we call "expression manifolds". We applied this strategy in Escherichia coli to interactions between two paradigmatic TFs: CRP and RNA polymerase (RNAP). Doing so, we consistently obtain measurements precise to ~0.1 kcal/mol. Unexpectedly, CRP-RNAP interactions are seen to deviate in multiple ways from the prior literature. Moreover, the well-known RNAP binding motif is found to be a surprisingly unreliable predictor of RNAP-DNA binding energy. Our strategy is compatible with massively parallel reporter assays in both prokaryotes and eukaryotes, and should thus be highly scalable and broadly applicable

    Endogenous Telomerase Reverse Transcriptase N-Terminal Tagging Affects Human Telomerase Function at Telomeres In Vivo

    No full text
    Telomerase action at telomeres is essential for the immortal phenotype of stem cells and the aberrant proliferative potential of cancer cells. Insufficient telomere maintenance can cause stem cell and tissue failure syndromes, while increased telomerase levels are associated with tumorigenesis. Both pathologies can arise from only small perturbation of telomerase function. To analyze telomerase at its low endogenous expression level, we genetically engineered human pluripotent stem cells (hPSCs) to express various N-terminal fusion proteins of the telomerase reverse transcriptase from its endogenous locus. Using this approach, we found that these modifications can perturb telomerase function in hPSCs and cancer cells, resulting in telomere length defects. Biochemical analysis suggests that this defect is multileveled, including changes in expression and activity. These findings highlight the unknown complexity of telomerase structural requirements for expression and function in vivo
    corecore