355 research outputs found

    Higher order Jordan Osserman Pseudo-Riemannian manifolds

    Full text link
    We study the higher order Jacobi operator in pseudo-Riemannian geometry. We exhibit a family of manifolds so that this operator has constant Jordan normal form on the Grassmannian of subspaces of signature (r,s) for certain values of (r,s). These pseudo-Riemannian manifolds are new and non-trivial examples of higher order Osserman manifolds

    Covariant techniques for computation of the heat kernel

    Get PDF
    The heat kernel associated with an elliptic second-order partial differential operator of Laplace type acting on smooth sections of a vector bundle over a Riemannian manifold, is studied. A general manifestly covariant method for computation of the coefficients of the heat kernel asymptotic expansion is developed. The technique enables one to compute explicitly the diagonal values of the heat kernel coefficients, so called Hadamard-Minackshisundaram-De Witt-Seeley coefficients, as well as their derivatives. The elaborated technique is applicable for a manifold of arbitrary dimension and for a generic Riemannian metric of arbitrary signature. It is very algorithmic, and well suited to automated computation. The fourth heat kernel coefficient is computed explicitly for the first time. The general structure of the heat kernel coefficients is investigated in detail. On the one hand, the leading derivative terms in all heat kernel coefficients are computed. On the other hand, the generating functions in closed covariant form for the covariantly constant terms and some low-derivative terms in the heat kernel coefficients are constructed by means of purely algebraic methods. This gives, in particular, the whole sequence of heat kernel coefficients for an arbitrary locally symmetric space.Comment: 31 pages, LaTeX, no figures, Invited Lecture at the University of Iowa, Iowa City, April, 199

    Covariant Algebraic Method for Calculation of the Low-Energy Heat Kernel

    Get PDF
    Using our recently proposed covariant algebraic approach the heat kernel for a Laplace-like differential operator in low-energy approximation is studied. Neglecting all the covariant derivatives of the gauge field strength (Yang-Mills curvature) and the covariant derivatives of the potential term of third order and higher a closed formula for the heat kernel as well as its diagonal is obtained. Explicit formulas for the coefficients of the asymptotic expansion of the heat kernel diagonal in terms of the Yang-Mills curvature, the potential term and its first two covariant derivatives are obtained.Comment: 19 pages, Plain TeX, 44 KB, no figure

    Pseudo-Riemannian Jacobi-Videv Manifolds

    Full text link
    We exhibit several families of Jacobi-Videv pseudo-Riemannian manifolds which are not Einstein. We also exhibit Jacobi-Videv algebraic curvature tensors where the Ricci operator defines an almost complex structure

    Curvature homogeneous spacelike Jordan Osserman pseudo-Riemannian manifolds

    Full text link
    Let s be at least 2. We construct Ricci flat pseudo-Riemannian manifolds of signature (2s,s) which are not locally homogeneous but whose curvature tensors never the less exhibit a number of important symmetry properties. They are curvature homogeneous; their curvature tensor is modeled on that of a local symmetric space. They are spacelike Jordan Osserman with a Jacobi operator which is nilpotent of order 3; they are not timelike Jordan Osserman. They are k-spacelike higher order Jordan Osserman for 2ks2\le k\le s; they are k-timelike higher order Jordan Osserman for s+2k2ss+2\le k\le 2s, and they are not k timelike higher order Jordan Osserman for 2ss+12\le s\le s+1.Comment: Update bibliography, fix minor misprint

    Examples of signature (2,2) manifolds with commuting curvature operators

    Full text link
    We exhibit Walker manifolds of signature (2,2) with various commutativity properties for the Ricci operator, the skew-symmetric curvature operator, and the Jacobi operator. If the Walker metric is a Riemannian extension of an underlying affine structure A, these properties are related to the Ricci tensor of A

    Green functions of higher-order differential operators

    Get PDF
    The Green functions of the partial differential operators of even order acting on smooth sections of a vector bundle over a Riemannian manifold are investigated via the heat kernel methods. We study the resolvent of a special class of higher-order operators formed by the products of second-order operators of Laplace type defined with the help of a unique Riemannian metric but with different bundle connections and potential terms. The asymptotic expansion of the Green functions near the diagonal is studied in detail in any dimension. As a by-product a simple criterion for the validity of the Huygens principle is obtained. It is shown that all the singularities as well as the non-analytic regular parts of the Green functions of such high-order operators are expressed in terms of the usual heat kernel coefficients aka_k for a special Laplace type second-order operator.Comment: 26 pages, LaTeX, 65 KB, no figures, some misprints and small mistakes are fixed, final version to appear in J. Math. Phys. (May, 1998

    Low-Energy Effective Action in Non-Perturbative Electrodynamics in Curved Spacetime

    Full text link
    We study the heat kernel for the Laplace type partial differential operator acting on smooth sections of a complex spin-tensor bundle over a generic nn-dimensional Riemannian manifold. Assuming that the curvature of the U(1) connection (that we call the electromagnetic field) is constant we compute the first two coefficients of the non-perturbative asymptotic expansion of the heat kernel which are of zero and the first order in Riemannian curvature and of arbitrary order in the electromagnetic field. We apply these results to the study of the effective action in non-perturbative electrodynamics in four dimensions and derive a generalization of the Schwinger's result for the creation of scalar and spinor particles in electromagnetic field induced by the gravitational field. We discover a new infrared divergence in the imaginary part of the effective action due to the gravitational corrections, which seems to be a new physical effect.Comment: LaTeX, 42 page

    The Heat Kernel Coefficients to the Matrix Schr\"odinger Operator

    Full text link
    The heat kernel coefficients HkH_k to the Schr\"odinger operator with a matrix potential are investigated. We present algorithms and explicit expressions for the Taylor coefficients of the HkH_k. Special terms are discussed, and for the one-dimensional case some improved algorithms are derived.Comment: 16 pages, Plain TeX, 33 KB, no figure

    Multiple reflection expansion and heat kernel coefficients

    Get PDF
    We propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be non-convergent.Comment: 21 pages, corrected for some misprint
    corecore