331 research outputs found

    Topic Modeling for Automatic Analysis of Natural Language: A Case Study in an Italian Customer Support Center

    Get PDF
    This paper focuses on the automatic analysis of conversation transcriptions in the call center of a customer care service. The goal is to recognize topics related to problems and complaints discussed in several dialogues between customers and agents. Our study aims to implement a framework able to automatically cluster conversation transcriptions into cohesive and well-separated groups based on the content of the data. The framework can alleviate the analyst selecting proper values for the analysis and the clustering processes. To pursue this goal, we consider a probabilistic model based on the latent Dirichlet allocation, which associates transcriptions with a mixture of topics in different proportions. A case study consisting of transcriptions in the Italian natural language, and collected in a customer support center of an energy supplier, is considered in the paper. Performance comparison of different inference techniques is discussed using the case study. The experimental results demonstrate the approach’s efficacy in clustering Italian conversation transcriptions. It also results in a practical tool to simplify the analytic process and off-load the parameter tuning from the end-user. According to recent works in the literature, this paper may be valuable for introducing latent Dirichlet allocation approaches in topic modeling for the Italian natural language

    A Comparison of Different Topic Modeling Methods through a Real Case Study of Italian Customer Care

    Get PDF
    The paper deals with the analysis of conversation transcriptions between customers and agents in a call center of a customer care service. The objective is to support the analysis of text transcription of human-to-human conversations, to obtain reports on customer problems and complaints, and on the way an agent has solved them. The aim is to provide customer care service with a high level of efficiency and user satisfaction. To this aim, topic modeling is considered since it facilitates insightful analysis from large documents and datasets, such as a summarization of the main topics and topic characteristics. This paper presents a performance comparison of four topic modeling algorithms: (i) Latent Dirichlet Allocation (LDA); (ii) Non-negative Matrix Factorization (NMF); (iii) Neural-ProdLDA (Neural LDA) and Contextualized Topic Models (CTM). The comparison study is based on a database containing real conversation transcriptions in Italian Natural Language. Experimental results and different topic evaluation metrics are analyzed in this paper to determine the most suitable model for the case study. The gained knowledge can be exploited by practitioners to identify the optimal strategy and to perform and evaluate topic modeling on Italian natural language transcriptions of human-to-human conversations. This work can be an asset for grounding applications of topic modeling and can be inspiring for similar case studies in the domain of customer care quality

    Incompressible analytical models for spinning-down pulsars

    Get PDF
    We study a class of Newtonian models for the deformations of non-magnetized neutron stars duringtheir spin-down. The models have all an analytical solution, and thus allow to understand easily thedependence of the strain on the star\u2019s main physical quantities, such as radius, mass and crust thickness.In the first \u201chistorical\u201d model the star is assumed to be comprised of a fluid core and an elastic crustwith the same density. We compare the response of stars with different masses and equations of stateto a decreasing centrifugal force, finding smaller deformations for heavier stars: the strain angle ispeaked at the equator and turns out to be a decreasing function of the mass.We introduce a second,more refined, model in which the core and the crust have different densities and the gravitationalpotential of the deformed body is self-consistently accounted for. Also in this case the strain angle isa decreasing function of the stellar mass, but its maximum value is at the poles and is always largerthan the corresponding one in the one-density model by a factor of two. Finally, within the presentanalytic approach, it is possible to estimate easily the impact of the Cowling approximation: neglectingthe perturbations of the gravitational potential, the strain angle is 40% of the one obtained with thecomplete model

    Ultrasound delivery of Surface Enhanced InfraRed Absorption active gold-nanoprobes into fibroblast cells: a biological study via Synchrotron-based InfraRed microanalysis at single cell level

    Get PDF
    Ultrasound (US) induced transient membrane permeabilisation has emerged as a hugely promising tool for the delivery of exogenous vectors through the cytoplasmic membrane, paving the way to the design of novel anticancer strategies by targeting functional nanomaterials to specific biological sites. An essential step towards this end is the detailed recognition of suitably marked nanoparticles in sonoporated cells and the investigation of the potential related biological effects. By taking advantage of Synchrotron Radiation fourier transform infrared micro-spectroscopy (SR-microftiR) in providing highly sensitive analysis at the single cell level, we studied the internalisation of a nanoprobe within fibroblasts (NIH-3T3) promoted by low-intensity US. To this aim we employed 20 nm gold nanoparticles conjugated with the IR marker 4-aminothiophenol. The significant Surface Enhanced Infrared Absorption provided by the nanoprobes, with an absorbance increase up to two orders of magnitude, allowed us to efficiently recognise their inclusion within cells. Notably, the selective and stable SR- microftiR detection from single cells that have internalised the nanoprobe exhibited clear changes in both shape and intensity of the spectral profile, highlighting the occurrence of biological effects. Flow cytometry, immunofluorescence and murine cytokinesis-block micronucleus assays confirmed the presence of slight but significant cytotoxic and genotoxic events associated with the US-nanoprobe combined treatments. our results can provide novel hints towards US and nanomedicine combined strategies for cell spectral imaging as well as drug delivery-based therapies

    Differential effects on membrane permeability and viability of human keratinocyte cells undergoing very low intensity megasonic fields

    Get PDF
    Among different therapeutic applications of Ultrasound (US), transient membrane sonoporation (SP) - a temporary, non-lethal porosity, mechanically induced in cell membranes through US exposure - represents a compelling opportunity towards an efficient and safe drug delivery. Nevertheless, progresses in this field have been limited by an insufficient understanding of the potential cytotoxic effects of US related to the failure of the cellular repair and to the possible activation of inflammatory pathway. In this framework we studied the in vitro effects of very low-intensity US on a human keratinocyte cell line, which represents an ideal model system of skin protective barrier cells which are the first to be involved during medical US treatments. Bioeffects linked to US application at 1 MHz varying the exposure parameters were investigated by fluorescence microscopy and fluorescence activated cell sorting. Our results indicate that keratinocytes undergoing low US doses can uptake drug model molecules with size and efficiency which depend on exposure parameters. According to sub-cavitation SP models, we have identified the range of doses triggering transient membrane SP, actually with negligible biological damage. By increasing US doses we observed a reduced cells viability and an inflammatory gene overexpression enlightening novel healthy relevant strategies

    Mid-Infrared Plasmonic Platform Based on n-Doped Ge-on-Si: Molecular Sensing with Germanium Nano-Antennas on Si

    Get PDF
    CMOS-compatible, heavily-doped semiconductor films are very promising for applications in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate n-type doped germanium epilayers grown on Si substrates. We design and realize Ge nanoantennas on Si substrates demonstrating the presence of localized plasmon resonances, and exploit them for molecular sensing in the mid-infrared

    Heavily-doped Germanium on Silicon with Activated Doping Exceeding 1020 cm−3 as an Alternative to Gold for Mid-infrared Plasmonics

    Get PDF
    Ge-on-Si has been demonstrated as a platform for Si foundry compatible plasmonics. We use laser thermal annealing to demonstrate activated doping levels >1020 cm-3 which allows most of the 3 to 20 μm mid-infrared sensing window to be covered with enhancements comparable to gold plasmonics

    Limiting mechanisms for photon recycling in thin-film GaAs solar cells

    Get PDF
    Photon recycling mechanisms in single junction thin-film GaAs solar cells are evaluated in this study. Modelling supported by experimentally obtained results is used in order to correlate the reflectance of the cell's rear layers, the photon recycling probability, and the solar cell performance. Solar cells with different top and bottom metallization configurations are produced, and their performance is analyzed from the optical and electrical point of view. It is shown that the photon recycling probability increases with the rear mirror reflectance and solar cell thickness, which results in the increase of the devices open circuit voltage. However, the front grid coverage, usually disregarded in rear mirror focused studies, strongly reduces the photon recycling probability. Furthermore, perimeter and interface recombination hinder the internal radiative efficiency of the solar cells, preventing further increase of the devices' open circuit voltage as a result of improvements of the rear mirror reflectivity. In order to exploit the significant benefit of increased photon recycling probability to the solar cell performance, these limiting mechanisms need to be properly addressed

    What was Glaucoma Called Before the 20th Century?

    Get PDF
    Glaucoma involves a characteristic optic neuropathy, often with elevated intraocular pressure. Before 1850, poor vision with a normal eye appearance, as occurs in primary open-angle glaucoma, was termed amaurosis, gutta serena, or black cataract. Few observers noted palpable hardness of the eye in amaurosis. On the other hand, angle-closure glaucoma can produce a green or gray pupil, and therefore was called, variously, glaucoma (derived from the Greek for glaucous, a nonspecific term connoting blue, green, or light gray) and viriditate oculi. Angle closure, with palpable hardness of the eye, mydriasis, and anterior prominence of the lens, was described in greater detail in the 18th and 19th centuries. The introduction of the ophthalmoscope in 1850 permitted the visualization of the excavated optic neuropathy in eyes with a normal or with a dilated greenish-gray pupil. Physicians developed a better appreciation of the role of intraocular pressure in both conditions, which became subsumed under the rubric “glaucoma”
    corecore