12 research outputs found

    Quantum Lattice Solitons

    Get PDF
    The number state method is used to study soliton bands for three anharmonic quantum lattices: i) The discrete nonlinear Schr\"{o}dinger equation, ii) The Ablowitz-Ladik system, and iii) A fermionic polaron model. Each of these systems is assumed to have ff-fold translational symmetry in one spatial dimension, where ff is the number of freedoms (lattice points). At the second quantum level (n=2)(n=2) we calculate exact eigenfunctions and energies of pure quantum states, from which we determine binding energy (Eb)(E_{\rm b}), effective mass (m)(m^{*}) and maximum group velocity (Vm)(V_{\rm m}) of the soliton bands as functions of the anharmonicity in the limit ff \to \infty. For arbitrary values of nn we have asymptotic expressions for EbE_{\rm b}, mm^{*}, and VmV_{\rm m} as functions of the anharmonicity in the limits of large and small anharmonicity. Using these expressions we discuss and describe wave packets of pure eigenstates that correspond to classical solitons.Comment: 21 pages, 1 figur

    Microscopic Non-Universality versus Macroscopic Universality in Algorithms for Critical Dynamics

    Full text link
    We study relaxation processes in spin systems near criticality after a quench from a high-temperature initial state. Special attention is paid to the stage where universal behavior, with increasing order parameter emerges from an early non-universal period. We compare various algorithms, lattice types, and updating schemes and find in each case the same universal behavior at macroscopic times, despite of surprising differences during the early non-universal stages.Comment: 9 pages, 3 figures, RevTeX, submitted to Phys. Rev. Let

    Quantum Solitions in the DNLS and Hubbard Models

    No full text

    Effect of the vacancy interaction on antiphase domain-growth in a two-dimensional binary alloy

    Get PDF
    The influence of diffusing vacancies on the antiphase domain growth process in a binary alloy is studied by Monte Carlo simulations. The system is modelled by means of a Blume-Emery-Griffiths hamiltonian with a biquadratic coupling parameter K controlling the microscopic interactions between vacancies. We obtain that, independently of K, the vacancies exhibit a tendency to concentrate on the antiphase boundaries. This gives rise to an effective interactions between movin interfaces and diffusing vacancies which strongly influences the domain growth process. One distinguishes three different behaviours: i) for K 1 the growth is slown down but still curvature driven

    Quantum Solitions in the DNLS and Hubbard Models

    No full text
    corecore