134 research outputs found

    Molecular investigations in animal models of Huntington's disease

    Get PDF
    NF-κB is a transcription factor family, which includes the proteins p65, p50 and p52. Inducible in most cell types, NF-κB (p65) has been demonstrated to be present in the nuclei of cortical neurones. This work demonstrates that p65, p50 and p52 are also present in striatal neurones, and that p52 localises to neuronal nuclear bodies. Administration of the excitotoxin quinolinic acid (QA) or the glial activator ciliary neurotrophic factor (CNTF) leads to an increase of protein binding to NF-κB DNA oligonucleotides in a biphasic temporal manner. PAGE revealed no significant change in expression of known NF-κB proteins after either treatment, but a 35 kD protein of unknown identity is recognised by anti-p50, being transiently expressed following both QA and CNTF administration. Furthermore, p52 and p65 can be localised within glial cells following QA treatment. Endogenous levels of striatal CNTF are also seen to increase significantly at 168 hours post-lesion. These results implicate NF-κB in the regulation of the glial response to striatal lesion. Polyglutamine repeats can bind via hydrogen bonding in vitro, and may lead to aggregation of proteins if mutation leads to increased trinucleotide repeat length. A preliminary study of the DNA binding, expression and localisation of the polyglutamine repeat transcription factors Brain-2 (BRN-2), glucocorticoid receptor and TATA binding protein (TBP) were investigated in the CNS of R6/2 transgenic mice expressing abnormal huntingtin protein (htt) possessing expanded polyglutamine repeats. These mice develop neuronal nuclear inclusions of aggregated htt and demonstrate symptoms similar to juvenile onset Huntington's disease. Increased protein binding to OCT consensus site DNA was found in the cortex of transgenes corresponding to BRN-2. This work provides no evidence that abnormal htt induces symptoms via transcriptional dysregulation, as has been proposed. However, decreased expression of BRN-2 is seen in the hypothalamic paraventricular nucleus in transgenic animals

    LDL receptor-related protein-1 regulates NFκB and microRNA-155 in macrophages to control the inflammatory response

    Get PDF
    LDL receptor-related protein-1 (LRP1) is an endocytic and cell-signaling receptor. In mice in which LRP1 is deleted in myeloid cells, the response to lipopolysaccharide (LPS) was greatly exacerbated. LRP1 deletion in macrophages in vitro, under the control of tamoxifen-activated Cre-ER(T) fusion protein, robustly increased expression of proinflammatory cytokines and chemokines. In LRP1-expressing macrophages, proinflammatory mediator expression was regulated by LRP1 ligands in a ligand-specific manner. The LRP1 agonists, α2-macroglobulin and tissue-type plasminogen activator, attenuated expression of inflammatory mediators, even in the presence of LPS. The antagonists, receptor-associated protein (RAP) and lactoferrin (LF), and LRP1-specific antibody had the entirely opposite effect, promoting inflammatory mediator expression and mimicking LRP1 deletion. NFκB was rapidly activated in response to RAP and LF and responsible for the initial increase in expression of proinflammatory mediators. RAP and LF also significantly increased expression of microRNA-155 (miR-155) after a lag phase of about 4 h. miR-155 expression reflected, at least in part, activation of secondary cell-signaling pathways downstream of TNFα. Although miR-155 was not involved in the initial induction of cytokine expression in response to LRP1 antagonists, miR-155 was essential for sustaining the proinflammatory response. We conclude that LRP1, NFκB, and miR-155 function as members of a previously unidentified system that has the potential to inhibit or sustain inflammation, depending on the continuum of LRP1 ligands present in the macrophage microenvironment

    Anatomy of a pressure-induced, ferromagnetic-to-paramagnetic transition in pyrrhotite: Implications for the formation pressure of diamonds

    Get PDF
    Meteorites and diamonds encounter high pressures during their formation or subsequent evolution. These materials commonly contain magnetic inclusions of pyrrhotite. Because magnetic properties are sensitive to strain, pyrrhotite can potentially record the shock or formation pressures of its host. Moreover, pyrrhotite undergoes a pressure-induced phase transition between 1.6 and 6.2 GPa, but the magnetic signature of this transition is poorly known. Here we report room temperature magnetic measurements on multidomain and single-domain pyrrhotite under nonhydrostatic pressure. Magnetic remanence in single-domain pyrrhotite is largely insensitive to pressure until 2 GPa, whereas the remanence of multidomain pyrrhotite increases 50\% over that of initial conditions by 2 GPa, and then decreases until only 33\% of the original remanence remains by 4.5 GPa. In contrast, magnetic coercivity increases with increasing pressure to 4.5 GPa. Below ∼1.5 GPa, multidomain pyrrhotite obeys Néel theory with a positive correlation between coercivity and remanence; above ∼1.5 GPa, it behaves single domain-like yet distinctly different from uncompressed single-domain pyrrhotite. The ratio of magnetic coercivity and remanence follows a logarithmic law with respect to pressure, which can potentially be used as a geobarometer. Owing to the greater thermal expansion of pyrrhotite with respect to diamond, pyrrhotite inclusions in diamonds experience a confining pressure at Earth’s surface. Applying our experimentally derived magnetic geobarometer to pyrrhotite-bearing diamonds from Botswana and the Central African Republic suggests the pressures of the pyrrhotite inclusions in the diamonds range from 1.3 to 2.1 GPa. These overpressures constrain the mantle source pressures from 5.4 to 9.5 GPa, depending on which bulk modulus and thermal expansion coefficients of the two phases are used

    Distribution of magnetic remanence carriers in the human brain

    Get PDF
    That the human brain contains magnetite is well established;however, its spatial distribution in the brain has remained unknown. We present room temperature, remanent magnetization measurements on 822 specimens from seven dissected whole human brains in order to systematically map concentrations of magnetic remanence carriers. Median saturation remanent magnetizations from the cerebellum were approximately twice as high as those from the cerebral cortex in all seven cases (statistically significantly distinct, p = 0.016). Brain stems were over two times higher in magnetization on average than the cerebral cortex. The ventral (lowermost) horizontal layer of the cerebral cortex was consistently more magnetic than the average cerebral cortex in each of the seven studied cases. Although exceptions existed, the reproducible magnetization patterns lead us to conclude that magnetite is preferentially partitioned in the human brain, specifically in the cerebellum and brain stem

    Coilin Phosphomutants Disrupt Cajal Body Formation, Reduce Cell Proliferation and Produce a Distinct Coilin Degradation Product

    Get PDF
    Coilin is a nuclear phosphoprotein that accumulates in Cajal bodies (CBs). CBs participate in ribonucleoprotein and telomerase biogenesis, and are often found in cells with high transcriptional demands such as neuronal and cancer cells, but can also be observed less frequently in other cell types such as fibroblasts. Many proteins enriched within the CB are phosphorylated, but it is not clear what role this modification has on the activity of these proteins in the CB. Coilin is considered to be the CB marker protein and is essential for proper CB formation and composition in mammalian cells. In order to characterize the role of coilin phosphorylation on CB formation, we evaluated various coilin phosphomutants using transient expression. Additionally, we generated inducible coilin phosphomutant cell lines that, when used in combination with endogenous coilin knockdown, allow for the expression of the phosphomutants at physiological levels. Transient expression of all coilin phosphomutants except the phosphonull mutant (OFF) significantly reduces proliferation. Interestingly, a stable cell line induced to express the coilin S489D phosphomutant displays nucleolar accumulation of the mutant and generates a N-terminal degradation product; neither of which is observed upon transient expression. A N-terminal degradation product and nucleolar localization are also observed in a stable cell line induced to express a coilin phosphonull mutant (OFF). The nucleolar localization of the S489D and OFF coilin mutants observed in the stable cell lines is decreased when endogenous coilin is reduced. Furthermore, all the phosphomutant cells lines show a significant reduction in CB formation when compared to wild-type after endogenous coilin knockdown. Cell proliferation studies on these lines reveal that only wild-type coilin and the OFF mutant are sufficient to rescue the reduction in proliferation associated with endogenous coilin depletion. These results emphasize the role of coilin phosphorylation in the formation and activity of CBs

    Pregnancy outcomes and risk of placental malaria after artemisinin-based and quinine-based treatment for uncomplicated falciparum malaria in pregnancy: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis.

    Get PDF
    BACKGROUND: Malaria in pregnancy, including asymptomatic infection, has a detrimental impact on foetal development. Individual patient data (IPD) meta-analysis was conducted to compare the association between antimalarial treatments and adverse pregnancy outcomes, including placental malaria, accompanied with the gestational age at diagnosis of uncomplicated falciparum malaria infection. METHODS: A systematic review and one-stage IPD meta-analysis of studies assessing the efficacy of artemisinin-based and quinine-based treatments for patent microscopic uncomplicated falciparum malaria infection (hereinafter uncomplicated falciparum malaria) in pregnancy was conducted. The risks of stillbirth (pregnancy loss at ≥ 28.0 weeks of gestation), moderate to late preterm birth (PTB, live birth between 32.0 and < 37.0 weeks), small for gestational age (SGA, birthweight of < 10th percentile), and placental malaria (defined as deposition of malaria pigment in the placenta with or without parasites) after different treatments of uncomplicated falciparum malaria were assessed by mixed-effects logistic regression, using artemether-lumefantrine, the most used antimalarial, as the reference standard. Registration PROSPERO: CRD42018104013. RESULTS: Of the 22 eligible studies (n = 5015), IPD from16 studies were shared, representing 95.0% (n = 4765) of the women enrolled in literature. Malaria treatment in this pooled analysis mostly occurred in the second (68.4%, 3064/4501) or third trimester (31.6%, 1421/4501), with gestational age confirmed by ultrasound in 91.5% (4120/4503). Quinine (n = 184) and five commonly used artemisinin-based combination therapies (ACTs) were included: artemether-lumefantrine (n = 1087), artesunate-amodiaquine (n = 775), artesunate-mefloquine (n = 965), and dihydroartemisinin-piperaquine (n = 837). The overall pooled proportion of stillbirth was 1.1% (84/4361), PTB 10.0% (619/4131), SGA 32.3% (1007/3707), and placental malaria 80.1% (2543/3035), and there were no significant differences of considered outcomes by ACT. Higher parasitaemia before treatment was associated with a higher risk of SGA (adjusted odds ratio [aOR] 1.14 per 10-fold increase, 95% confidence interval [CI] 1.03 to 1.26, p = 0.009) and deposition of malaria pigment in the placenta (aOR 1.67 per 10-fold increase, 95% CI 1.42 to 1.96, p < 0.001). CONCLUSIONS: The risks of stillbirth, PTB, SGA, and placental malaria were not different between the commonly used ACTs. The risk of SGA was high among pregnant women infected with falciparum malaria despite treatment with highly effective drugs. Reduction of malaria-associated adverse birth outcomes requires effective prevention in pregnant women

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
    corecore