349 research outputs found

    Subclinical Shed of Infectious Varicella zoster Virus in Astronauts

    Get PDF
    Aerosol borne varicella zoster virus (VZV) enters the nasopharynx and replicates in tonsillar T-cells, resulting in viremia and varicella (chickenpox). Virus then becomes latent in cranial nerve, dorsal root and autonomic nervous system ganglia along the entire neuraxis (1). Decades later, as cell-mediated immunity to VZV declines (4), latent VZV can reactivate to produce zoster (shingles). Infectious VZV is present in patients with varicella or zoster, but shed of infectious virus in the absence of disease has not been shown. We previously detected VZV DNA in saliva of astronauts during and shortly after spaceflight, suggesting stress induced subclinical virus reactivation (3). We show here that VZV DNA as well as infectious virus in present in astronaut saliva. VZV DNA was detected in saliva during and after a 13-day spaceflight in 2 of 3 astronauts (Fig. panel A). Ten days before liftoff, there was a rise in serum anti-VZV antibody in subjects 1 and 2, consistent with virus reactivation. In subject 3, VZV DNA was not detected in saliva, and there was no rise in anti-VZV antibody titer. Subject 3 may have been protected from virus reactivation by having zoster <10 years ago, which provides a boost in cell-medicated immunity to VZV (2). No VZV DNA was detected in astronaut saliva months before spaceflight, or in saliva of 10 age/sex-matched healthy control subjects sampled on alternate days for 3 weeks (88 saliva samples). Saliva taken 2-6 days after landing from all 3 subjects was cultured on human fetal lung cells (Fig. panel B). Infectious VZV was recovered from saliva of subjects 1 and 2 on the second day after landing. Virus specificity was confirmed by antibody staining and DNA analysis which showed it to be VZV of European descent, common in the US (5). Further, both antibody staining and DNA PCR demonstrated that no HSV-1 was detected in any infected culture. This is the first report of infectious VZV shedding in the absence of clinical disease. Spaceflight presents a uniquely stressful environment which includes physical isolation and confinement, anxiety, sleep deprivation, as well as exposure to increased radiation and microgravity. It is interesting that in our study, VZV and not HSV-1 reactivation was detected, since stress-induced HSV-1 reactivation has been reported (6). Future studies are needed to determine the specific inducer of VZV reactivation

    The Minimum Stellar Mass in Early Galaxies

    Full text link
    The conditions for the fragmentation of the baryonic component during merging of dark matter halos in the early Universe are studied. We assume that the baryonic component undergoes a shock compression. The characteristic masses of protostellar molecular clouds and the minimum masses of protostars formed in these clouds decrease with increasing halo mass. This may indicate that the initial stellar mass function in more massive galaxies was shifted towards lower masses during the initial stages of their formation. This would result in an increase of the number of stars per unit halo mass, i.e., the efficiency of star formation.Comment: 18 pages, 7 figure

    Simple model for 1/f noise

    Full text link
    We present a simple stochastic mechanism which generates pulse trains exhibiting a power law distribution of the pulse intervals and a 1/fα1/f^\alpha power spectrum over several decades at low frequencies with α\alpha close to one. The essential ingredient of our model is a fluctuating threshold which performs a Brownian motion. Whenever an increasing potential V(t)V(t) hits the threshold, V(t)V(t) is reset to the origin and a pulse is emitted. We show that if V(t)V(t) increases linearly in time, the pulse intervals can be approximated by a random walk with multiplicative noise. Our model agrees with recent experiments in neurobiology and explains the high interpulse interval variability and the occurrence of 1/fα1/f^\alpha noise observed in cortical neurons and earthquake data.Comment: 4 pages, 4 figure

    Emergence of Tuning to Natural Stimulus Statistics along the Central Auditory Pathway

    Get PDF
    We have previously shown that neurons in primary auditory cortex (A1) of anaesthetized (ketamine/medetomidine) ferrets respond more strongly and reliably to dynamic stimuli whose statistics follow "natural" 1/f dynamics than to stimuli exhibiting pitch and amplitude modulations that are faster (1/f(0.5)) or slower (1/f(2)) than 1/f. To investigate where along the central auditory pathway this 1/f-modulation tuning arises, we have now characterized responses of neurons in the central nucleus of the inferior colliculus (ICC) and the ventral division of the mediate geniculate nucleus of the thalamus (MGV) to 1/f(gamma) distributed stimuli with gamma varying between 0.5 and 2.8. We found that, while the great majority of neurons recorded from the ICC showed a strong preference for the most rapidly varying (1/f(0.5) distributed) stimuli, responses from MGV neurons did not exhibit marked or systematic preferences for any particular gamma exponent. Only in A1 did a majority of neurons respond with higher firing rates to stimuli in which gamma takes values near 1. These results indicate that 1/f tuning emerges at forebrain levels of the ascending auditory pathway

    Prevalence of a history of prior varicella/herpes zoster infection in multiple sclerosis

    Get PDF
    Varicella zoster virus (VZV) infection has been implicated in multiple sclerosis (MS), but direct causal involvement has been disputed. Nevertheless, knowledge of VZV exposure is important, given the risk of serious complications of first exposure while undergoing immunosuppressive treatment, in particular with fingolimod. We distributed questionnaires to MS clinic patients, requesting information about history of chickenpox, sibling/household/occupational exposure, history of zoster (shingles), and disease-modifying treatment. A random, proportionally representative sample of 51 patients that included patients with positive, negative, and unknown chickenpox history were selected for determination of VZV IgG by ELISA. Of 1206 distributed questionnaires, 605 were returned (50% response rate). Of these, 86% reported history of chickenpox, 5.6% gave negative history, and 8.5% did not know. Of 594 who answered the zoster question, 78% gave a negative response, 4% did not know, and 104 (17%) answered yes. Of these, 83 reported 1 episode; 12 had 2; 5 had 3; and 1 each reported 5, 6, and 15 episodes. Of 51 patients tested for VZV IgG (44 “yes,” 4 “no,” and 3 “I don’t know” answers to the question of whether they had chickenpox), 48 were seropositive; the 3 seronegative all had reported having had chickenpox. The high rate of MS patients reporting prior chickenpox infection is comparable with previous reports. A substantial proportion of MS patients, estimated to be higher than an age-matched general population, report single or multiple episodes of zoster. These data are useful for consideration of immunosuppressive treatments and/or VZV and zoster vaccination

    Evolutionary autonomous agents and the nature of apraxia

    Get PDF
    BACKGROUND: Evolutionary autonomous agents are robots or robot simulations whose controller is a dynamical neural network and whose evolution occurs autonomously under the guidance of a fitness function without the detailed or explicit direction of an external programmer. They are embodied agents with a simple neural network controller and as such they provide the optimal forum by which sensorimotor interactions in a specified environment can be studied without the computational assumptions inherent in standard neuroscience. METHODS: Evolutionary autonomous agents were evolved that were able to perform identical movements under two different contexts, one which represented an automatic movement and one which had a symbolic context. In an attempt to model the automatic-voluntary dissociation frequently seen in ideomotor apraxia, lesions were introduced into the neural network controllers resulting in a behavioral dissociation with loss of the ability to perform the movement which had a symbolic context and preservation of the simpler, automatic movement. RESULTS: Analysis of the changes in the hierarchical organization of the networks in the apractic EAAs demonstrated consistent changes in the network dynamics across all agents with loss of longer duration time scales in the network dynamics. CONCLUSION: The concepts of determinate motor programs and perceptual representations that are implicit in the present day understanding of ideomotor apraxia are assumptions inherent in the computational understanding of brain function. The strength of the present study using EAAs to model one aspect of ideomotor apraxia is the absence of these assumptions and a grounding of all sensorimotor interactions in an embodied, autonomous agent. The consistency of the hierarchical changes in the network dynamics across all apractic agents demonstrates that this technique is tenable and will be a valuable adjunct to a computational formalism in the understanding of the physical basis of neurological disorders

    Varicella-Zoster viruses associated with post-herpetic neuralgia induce sodium current density increases in the ND7-23 Nav-1.8 neuroblastoma cell line

    Get PDF
    Post-herpetic neuralgia (PHN) is the most significant complication of herpes zoster caused by reactivation of latent Varicella-Zoster virus (VZV). We undertook a heterologous infection in vitro study to determine whether PHN-associated VZV isolates induce changes in sodium ion channel currents known to be associated with neuropathic pain. Twenty VZV isolates were studied blind from 11 PHN and 9 non-PHN subjects. Viruses were propagated in the MeWo cell line from which cell-free virus was harvested and applied to the ND7/23-Nav1.8 rat DRG x mouse neuroblastoma hybrid cell line which showed constitutive expression of the exogenous Nav 1.8, and endogenous expression of Nav 1.6 and Nav 1.7 genes all encoding sodium ion channels the dysregulation of which is associated with a range of neuropathic pain syndromes. After 72 hrs all three classes of VZV gene transcripts were detected in the absence of infectious virus. Single cell sodium ion channel recording was performed after 72 hr by voltage-clamping. PHN-associated VZV significantly increased sodium current amplitude in the cell line when compared with non-PHN VZV, wild-type (Dumas) or vaccine VZV strains ((POka, Merck and GSK). These sodium current increases were unaffected by acyclovir pre-treatment but were abolished by exposure to Tetrodotoxin (TTX) which blocks the TTX-sensitive fast Nav 1.6 and Nav 1.7 channels but not the TTX-resistant slow Nav 1.8 channel. PHN-associated VZV sodium current increases were therefore mediated in part by the Nav 1.6 and Nav 1.7 sodium ion channels. An additional observation was a modest increase in message levels of both Nav1.6 and Nav1.7 mRNA but not Nav 1.8 in PHN virally infected cells

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres

    Emergent complex neural dynamics

    Full text link
    A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain
    • …
    corecore