24,704 research outputs found
The impact of an emotionally expressive writing intervention on eating pathology in female students
© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Introduction: Previous research demonstrating emotional influences on eating and weight suggest that emotionally expressive writing may have a significant impact on reducing risk of eating pathology. This study examined the effects of writing about Intensely Positive Experiences on weight and disordered eating during a naturalistic stressor. Method: Seventy-one female students completed an expressive or a control writing task before a period of exams. Both groups were compared on BMI (kg/m2) and the Eating Disorder Examination – Questionnaire (EDE-Q) before the writing task and at 8-week follow-up. A number of secondary analyses were also examined (to identify potential mediators) including measures of attachment, social rank, self-criticism and self-reassurance, stress and mood. Results: There was a significant effect of intervention on changes in the subscales of the EDE-Q (p = .03). Specifically, expressive writers significantly reduced their dietary restraint while those in the control group did not. There was no significant effect of the intervention on changes in BMI or the other subscales of the EDE-Q (Eating, Weight and Shape Concern). There was also no effect of writing on any of the potential mediators in the secondary analyses. Discussion: Emotionally expressive writing may reduce the risk of dietary restraint in women but these findings should be accepted with caution. It is a simple and light touch intervention that has the potential to be widely applied. However, it remains for future research to replicate these results and to identify the mechanisms of action.Peer reviewedFinal Published versio
Effects of fuselage forebody geometry on low-speed lateral-directional characteristics of twin-tail fighter model at high angles of attack
Low-speed, static wind-tunnel tests were conducted to explore the effects of fighter fuselage forebody geometry on lateral-directional characteristics at high angles of attack and to provide data for general design procedures. Effects of eight different forebody configurations and several add-on devices (e.g., nose strakes, boundary-layer trip wires, and nose booms) were investigated. Tests showed that forebody design features such as fineness ratio, cross-sectional shape, and add-on devices can have a significant influence on both lateral-directional and longitudinal aerodynamic stability. Several of the forebodies produced both lateral-directional symmetry and strong favorable changes in lateral-directional stability. However, the same results also indicated that such forebody designs can produce significant reductions in longitudinal stability near maximum lift and can significantly change the influence of other configuration variables. The addition of devices to highly tailored forebody designs also can significantly degrade the stability improvements provided by the clean forebody
Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass
The recent development of metallic alloy systems which can be processed with an amorphous structure over large dimensions, specifically to form metallic glasses at low cooling rates (similar to 10 K/s), has permitted novel measurements of important mechanical properties. These include, for example, fatigue-crack growth and fracture toughness behavior, representing the conditions governing the subcritical and critical propagation of cracks in these structures. In the present study, bulk plates of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy, machined into 7 mm wide, 38 mm thick compact-tension specimens and fatigue precracked following standard procedures, revealed fracture toughnesses in the fully amorphous structure of K(lc)similar to 55 MPa root m, i.e., comparable with that of a high-strength steel or aluminum ahoy. However, partial and full crystallization, e.g., following thermal exposure at 633 K or more, was found to result in a drastic reduction in fracture toughness to similar to 1 MPa root m, i.e., comparable with silica glass. The fully amorphous alloy was also found to be susceptible to fatigue-crack growth under cyclic loading, with growth-rate properties comparable to that of ductile crystalline metallic alloys, such as high-strength steels or aluminum alloys; no such fatigue was seen in the partially or fully crystallized alloys which behaved like very brittle ceramics. Possible micromechanical mechanisms for such behavior are discussed
New evidence on the Fed's productivity in providing payments services
As the dominant provider of payments services, the efficiency with which the Federal Reserve provides such services in an important public policy issue. This paper examines the productivity of Federal Reserve check-processing offices during 1980-1999 using non-parametric estimation methods and newly developed methods for non-parametric inference and hypothesis testing. The results support prior studies that found little initial improvement in the Fed's efficiency with the imposition of pricing for Federal Reserve services in 1982. However, we find that median productivity improved substantially during the 1990s, and the dispersion across Fed offices declined.>Productivity ; Payment systems ; Check collection systems
Exons, introns and DNA thermodynamics
The genes of eukaryotes are characterized by protein coding fragments, the
exons, interrupted by introns, i.e. stretches of DNA which do not carry any
useful information for the protein synthesis. We have analyzed the melting
behavior of randomly selected human cDNA sequences obtained from the genomic
DNA by removing all introns. A clear correspondence is observed between exons
and melting domains. This finding may provide new insights in the physical
mechanisms underlying the evolution of genes.Comment: 4 pages, 8 figures - Final version as published. See also Phys. Rev.
Focus 15, story 1
Similitude requirements and scaling relationships as applied to model testing
The similitude requirements for the most general test conditions are presented. These similitude requirements are considered in relation to the scaling relationships, test technique, test conditions (including supersonic flow), and test objectives. Particular emphasis is placed on satisfying the various similitude requirements for incompressible and compressible flow conditions. For free flying models tests, the test velocities for incompressible flow are scaled from Froude number similitude requirements and those for compressible flow are scaled from Mach number similitude requirements. The limitations of various test techniques are indicated, with emphasis on the free flying model
A Web/Grid Services Approach for Integration of Virtual Clinical & Research Environments
Clinicans have responsibilities for audit and research, often participating in projects with basic scientist colleagues. Our work in a regional teaching hospital setting involves collaboration with the medical school computer services and builds upon work developed in computer science department as part of the Collaborative Orthopaedic Research Environment (CORE) project[1]. This has established a pilot study for proof of concept work. Users are mapped to a personal profile implemented using XML and a service oriented architecture (SOA)[2,3]. This bridges the e-Health and e-Science domains, addressing some of the basic questions of security and uptake
- …