266 research outputs found

    Energy release in the solar atmosphere from a stream of infalling prominence debris

    Full text link
    Recent high-resolution and high-cadence EUV imaging has revealed a new phenomenon, impacting prominence debris, where prominence material from failed or partial eruptions can impact the lower atmosphere, releasing energy. We report a clear example of energy release and EUV brightening due to infalling prominence debris that occurred on 2011 September 7-8. The initial eruption of material was associated with an X1.8-class flare from AR11283, occurring at 22:30 UT on 2011 September 7. Subsequently, a semi-continuous stream of this material returned to the solar surface with a velocity v > 150 km/s, impacting a region remote from the original active region between 00:20 - 00:40 UT on 2011 September 8. Using SDO/AIA, the differential emission measure of the plasma was estimated throughout this brightening event. We found that the radiated energy of the impacted plasma was L_rad ~10^27 ergs, while the thermal energy peaked at ~10^28 ergs. From this we were able to determine the mass content of the debris to be in the range 2x10^14 < m < 2x10^15 g. Given typical promimence masses, the likely debris mass is towards the lower end of this range. This clear example of a prominence debris event shows that significant energy release takes place during these events, and that such impacts may be used as a novel diagnostic tool for investigating prominence material properties.Comment: Accepted by AstroPhysical Journal Letters, 6 pages, 5 figure

    Ion-Neutral Coupling in Solar Prominences

    Get PDF
    Interactions between ions and neutrals in a partially ionized plasma are important throughout heliophysics, including near the solar surface in prominences. Understanding how ion-neutral coupling affects formation, support, structure, and dynamics of prominences will advance our physical understanding of magnetized systems involving a transition from a weakly ionized dense gas to a fully ionized tenuous plasma. We address the fundamental physics of prominence support, which is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force, and the implications for observations. Because the prominence plasma is only partially ionized, it is necessary to consider the support of the both the ionized and neutral components. Support of the neutrals is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material

    Why Did We Have to Write About Girls?

    Get PDF

    Changes with time of Practitioners’ opinions of online Mathematics and Statistics Support

    Get PDF
    As an established part of the infrastructure of many higher education institutions in the UK and across the world, Mathematics and Statistics Support (MSS), was forced to move to an online setting as a result of restrictions put in place due to the COVID-19 pandemic. With institutions offering limited online support prior to the pandemic, MSS practitioners were mostly unprepared to deliver online provisions. Survey data from May 2020 gives a first look at the immediate response of practitioners to online MSS. Interview data from January/February 2021 explores opinions after a period of reflection, and survey data from June 2021, over a year on from the initial sample, provides a direct comparison in opinion of online support a year later. This paper explores these three datasets, investigating the practitioner perspective and offers an overall reflection of how MSS practitioners’ opinions of online support measures have changed from their “crisis-reaction” at the beginning of the pandemic to a more considered response as COVID-19 prevention measures are beginning to ease a year later

    The Origin of Sequential Chromospheric Brightenings

    Full text link
    Sequential chromospheric brightenings (SCBs) are often observed in the immediate vicinity of erupting flares and are associated with coronal mass ejections. Since their initial discovery in 2005, there have been several subsequent investigations of SCBs. These studies have used differing detection and analysis techniques, making it difficult to compare results between studies. This work employs the automated detection algorithm of Kirk et al. (Solar Phys. 283, 97, 2013) to extract the physical characteristics of SCBs in 11 flares of varying size and intensity. We demonstrate that the magnetic substructure within the SCB appears to have a significantly smaller area than the corresponding H-alpha emission. We conclude that SCBs originate in the lower corona around 0.1 R_sun above the photosphere, propagate away from the flare center at speeds of 35 - 85 km/s, and have peak photosphere magnetic intensities of 148 +/- 2.9 G. In light of these measurements, we infer SCBs to be distinctive chromospheric signatures of erupting coronal mass ejections.Comment: 25 pages, 9 figures, 5 table

    Comparing Spatial Distributions of Solar Prominence Mass Derived from Coronal Absorption

    Get PDF
    In the present work we extend the use of this mass-inference technique to a sample of prominences observed in at least two coronal lines. This approach, in theory, allows a direct calculation of prominence mass and helium abundance and how these properties vary spatially and temporally. Our motivation is two-fold: to obtain a He(exp 0)/H(exp 0) abundance ratio, and to determine how the relative spatial distribution of the two species varies in prominences. The first of these relies on the theoretical expectation that the amount of absorption at each EUV wavelength is well-characterized. However, in this work we show that due to a saturation of the continuum absorption in the 625 A and 368 A lines (which have much higher opacity compared to 195 A-) the uncertainties in obtaining the relative abundances are too high to give meaningful estimates. This is an important finding because of its impact on future studies in this area. The comparison of the spatial distribution of helium and hydrogen presented here augments previous observational work indicating that cross-field diffusion of neutrals is an important mechanism for mass loss. Significantly different loss timescales for neutral He and H (helium drains much more rapidly than hydrogen) can impact prominence structure, and both the present and past studies suggest this mechanism is playing a role in structure and possibly dynamics. Section 2 of this paper contains a description of the observations and Section 3 summarizes the method used to infer mass along with the criteria imposed in choosing prominences appropriate for this study. Section 3 also contains a discussion of the problems due to limitations of the available data and the implications for determining relative abundances. We present our results in Section 4, including plots of radial-like scans of prominence mass in different lines to show the spatial distribution of the different species. The last section contains a discussion summarizing the importance of the qualitative results found in this work. The Appendix provides a detailed derivation of how to obtain prominence mass and helium abundance (A 1) and includes the data for all prominences studied (A2)

    Halo Coronal Mass Ejections: Comparing Observations and Models

    Get PDF
    Since 1996, the SOHO LASCO coronagraphs have detected "halo" CMEs that appear to be directed toward Earth, but information about the size and speed of these events seen face-on has been limited. From a single vantage point along the Sun-Earth line, the primary limitation has been ambiguity in fitting the cone model (or other forward-modeling techniques, e.g., Thernisian et al., 2006). But in the past few years, the STEREO mission has provided a view of Earth-directed events from the side. These events offer the opportunity to compare measurements (width and speed) of halo CMEs observed by STEREO with models that derive halo CME properties. We report here results of such a comparison on a large sample of LASCO CMEs in the STEREO era

    GSFC Heliophysics Science Division 2008 Science Highlights

    Get PDF
    This report is intended to record and communicate to our colleagues, stakeholders, and the public at large about heliophysics scientific and flight program achievements and milestones for 2008, for which NASA Goddard Space Flight Center's Heliophysics Science Division (HSD) made important contributions. HSD comprises approximately 261 scientists, technologists, and administrative personnel dedicated to the goal of advancing our knowledge and understanding of the Sun and the wide variety of domains that its variability influences. Our activities include Lead science investigations involving flight hardware, theory, and data analysis and modeling that will answer the strategic questions posed in the Heliophysics Roadmap; Lead the development of new solar and space physics mission concepts and support their implementation as Project Scientists; Provide access to measurements from the Heliophysics Great Observatory through our Science Information Systems, and Communicate science results to the public and inspire the next generation of scientists and explorers
    corecore