9,952 research outputs found

    A local moment approach to the degenerate Anderson impurity model

    Full text link
    The local moment approach is extended to the orbitally-degenerate [SU(2N)] Anderson impurity model (AIM). Single-particle dynamics are obtained over the full range of energy scales, focussing here on particle-hole symmetry in the strongly correlated regime where the onsite Coulomb interaction leads to many-body Kondo physics with entangled spin and orbital degrees of freedom. The approach captures many-body broadening of the Hubbard satellites, recovers the correct exponential vanishing of the Kondo scale for all N, and its universal scaling spectra are found to be in very good agreement with numerical renormalization group (NRG) results. In particular the high-frequency logarithmic decays of the scaling spectra, obtained here in closed form for arbitrary N, coincide essentially perfectly with available numerics from the NRG. A particular case of an anisotropic Coulomb interaction, in which the model represents a system of N `capacitively-coupled' SU(2) AIMs, is also discussed. Here the model is generally characterised by two low-energy scales, the crossover between which is seen directly in its dynamics.Comment: 23 pages, 7 figure

    Teaching the Grid: Learning Distributed Computing with the M-grid Framework

    No full text
    A classic challenge within Computer Science is to distribute data and processes so as to take advantage of multiple computers tackling a single problem in a simultaneous and coordinated way. This situation arises in a number of different scenarios, including Grid computing which is a secure, service-based architecture for tackling massively parallel problems and creating virtual organizations. Although the Grid seems destined to be an important part of the future computing landscape, it is very difficult to learn how to use as real Grid software requires extensive setting up and complex security processes. M-grid mimics the core features of the Grid, in a much simpler way, enabling the rapid prototyping of distributed applications. We describe m-grid and explore how it may be used to teach foundation Grid computing skills at the Higher Education level and report some of our experiences of deploying it as an exercise within a programming course

    The Design of a Carbon Tax

    Get PDF
    We consider the design of a tax on greenhouse gas emissions for a developed country such as the United States. We consider three sets of issues: the optimal tax base, issues relating to the rate (including the use of the revenues and rate changes over time) and trade. We show that a well-designed carbon tax can capture about 80% of U.S. emissions by taxing fewer than 3,000 taxpayers and up to almost 90% with a modest additional cost. We recommend full or partial delegation of rate setting authority to an agency to ensure that rates reflect new information about the costs of carbon emissions and of abatement. Adjustments should be made to the income tax to ensure that a carbon tax is revenue neutral and distributionally neutral. Finally, we propose an origin-based system for trade with countries that have an adequate carbon tax and a system of border taxes for imports from countries without a carbon tax. We suggest a system that imposes presumptive border tax adjustments with the ability of an individual firm to prove that a different rate should apply. The presumptive tax could be based either on average emissions for production of the item by the exporting country or by the importing country

    The Design of a Carbon Tax

    Get PDF
    We consider the design of a tax on greenhouse gas emissions for a developed country such as the United States. We consider three sets of issues: the optimal tax base, issues relating to the rate (including the use of the revenues and rate changes over time) and trade. We show that a well-designed carbon tax can capture about 80% of U.S. emissions by taxing fewer than 3,000 taxpayers and up to almost 90% with a modest additional cost. We recommend full or partial delegation of rate setting authority to an agency to ensure that rates reflect new information about the costs of carbon emissions and of abatement. Adjustments should be made to the income tax to ensure that a carbon tax is revenue neutral and distributionally neutral. Finally, we propose an origin-based system for trade with countries that have an adequate carbon tax and a system of border taxes for imports from countries without a carbon tax. We suggest a system that imposes presumptive border tax adjustments with the ability of an individual firm to prove that a different rate should apply. The presumptive tax could be based either on average emissions for production of the item by the exporting country or by the importing country

    Acetazolamide-based fungal chitinase inhibitors

    Get PDF
    Chitin is an essential structural component of the fungal cell wall. Chitinases are thought to be important for fungal cell wall remodelling, and inhibition of these enzymes has been proposed as a potential strategy for development of novel anti-fungals. The fungal pathogen Aspergillus fumigatus possesses two distinct multi-gene chitinase families. Here we explore acetazolamide as a chemical scaffold for the inhibition of an A. fumigatus ‘plant-type’ chitinase. A co-crystal structure of AfChiA1 with acetazolamide was used to guide synthesis and screening of acetazolamide analogues that yielded SAR in agreement with these structural data. Although acetazolamide and its analogues are weak inhibitors of the enzyme, they have a high ligand efficiency and as such are interesting leads for future inhibitor development

    Targeting tauopathy with engineered tau-degrading intrabodies

    Get PDF
    BACKGROUND: The accumulation of pathological tau is the main component of neurofibrillary tangles and other tau aggregates in several neurodegenerative diseases, referred to as tauopathies. Recently, immunotherapeutic approaches targeting tau have been demonstrated to be beneficial in decreasing tauopathy in animal models. We previously found that passive immunotherapy with anti-tau antibody to human tau or expression of an anti-tau secreted single-chain variable fragment (scFv) in the central nervous system of a mouse model of tauopathy decreased but did not remove all tau-associated pathology. Although these and other studies demonstrate that conventional immunotherapeutic approaches targeting tau can influence tau pathogenesis, the majority of pathological tau remains in the cytosol of cells, not typically accessible to an extracellular antibody. Therefore, we reasoned targeting intracellular tau might be more efficacious in preventing or decreasing tauopathy. METHODS: By utilizing our anti-tau scFv, we generated anti-tau intrabodies for the expression in the cytosol of neurons. To enhance the degradation capacity of conventional intrabodies, we engineered chimeric anti-tau intrabodies fused to ubiquitin harboring distinct mutations that shuttle intracellular tau for either the proteasome or lysosomal mediated degradation. To evaluate the efficacy in delaying or eliminating tauopathy, we expressed our tau degrading intrabodies or controls in human tau transgenic mice by adeno-associated virus prior to overt tau pathology and after tau deposition. RESULTS: Our results demonstrate, the expression of chimeric anti-tau intrabodies significantly reduce tau protein levels in primary neuronal cultures expression human tau relative to a non-modified anti-tau intrabody. We found the expression of engineered tau-degrading intrabodies destined for proteasomal-mediated degradation are more effective in delaying or eliminating tauopathy than a conventional intrabody in aged human tau transgenic mice. CONCLUSION: This study, harnesses the strength of intrabodies that are amendable for targeting specific domains or modifications with the cell-intrinsic mechanisms that regulate protein degradation providing a new immunotherapeutic approach with potentially improved efficacy

    Object level footprint uncertainty quantification in infrastructure based sensing

    Full text link
    We examine the problem of estimating footprint uncertainty of objects imaged using the infrastructure based camera sensing. A closed form relationship is established between the ground coordinates and the sources of the camera errors. Using the error propagation equation, the covariance of a given ground coordinate can be measured as a function of the camera errors. The uncertainty of the footprint of the bounding box can then be given as the function of all the extreme points of the object footprint. In order to calculate the uncertainty of a ground point, the typical error sizes of the error sources are required. We present a method of estimating the typical error sizes from an experiment using a static, high-precision LiDAR as the ground truth. Finally, we present a simulated case study of uncertainty quantification from infrastructure based camera in CARLA to provide a sense of how the uncertainty changes across a left turn maneuver.Comment: Submitted to IEEE Sensors journa

    Quantum authentication with unitary coding sets

    Get PDF
    A general class of authentication schemes for arbitrary quantum messages is proposed. The class is based on the use of sets of unitary quantum operations in both transmission and reception, and on appending a quantum tag to the quantum message used in transmission. The previous secret between partners required for any authentication is a classical key. We obtain the minimal requirements on the unitary operations that lead to a probability of failure of the scheme less than one. This failure may be caused by someone performing a unitary operation on the message in the channel between the communicating partners, or by a potential forger impersonating the transmitter.Comment: RevTeX4, 10 page

    Mind the gap: a comparative study of migratory behavior in social amoebae

    Get PDF
    Social amoebae aggregate to form a multicellular slug that migrates some distance. Most species produce a stalk during migration, but some do not. We show that Dictyostelium giganteum, a species that produces stalk during migration, is able to traverse small gaps and utilize bacterial resources following gap traversal by shedding live cells. In contrast, we found that Dictyostelium discoideum, a species that does not produce stalk during migration, can traverse gaps only when in the presence of other species’ stalks or other thin filaments. These findings suggest that production of stalk during migration allows traversal of gaps that commonly occurs in soil and leaf litter. Considering the functional consequences of a stalked migration may be important for explaining the evolutionary maintenance or loss of a stalked migration
    corecore