3 research outputs found

    Quantifying memory in spin glasses

    No full text
    10 pages, 8 figuresRejuvenation and memory, long considered the distinguishing features of spin glasses, have recently been proven to result from the growth of multiple length scales. This insight, enabled by simulations on the Janus~II supercomputer, has opened the door to a quantitative analysis. We combine numerical simulations with comparable experiments to introduce two coefficients that quantify memory. A third coefficient has been recently presented by Freedberg et al. We show that these coefficients are physically equivalent by studying their temperature and waiting-time dependence

    Superposition principle and nonlinear response in spin glasses

    Get PDF
    International audienceThe extended principle of superposition has been a touchstone of spin-glass dynamics for almost 30 years. The Uppsala group has demonstrated its validity for the metallic spin glass, CuMn, for magnetic fields H up to 10 Oe at the reduced temperature Tr=T/Tg=0.95, where Tg is the spin-glass condensation temperature. For H>10 Oe, they observe a departure from linear response which they ascribe to the development of nonlinear dynamics. The thrust of this paper is to develop a microscopic origin for this behavior by focusing on the time development of the spin-glass correlation length, ξ(t,tw;H). Here, t is the time after H changes, and tw is the time from the quench for T>Tg to the working temperature T until H changes. We connect the growth of ξ(t,tw;H) to the barrier heights Δ(tw) that set the dynamics. The effect of H on the magnitude of Δ(tw) is responsible for affecting differently the two dynamical protocols associated with turning H off (TRM, or thermoremanent magnetization) or on (ZFC, or zero-field-cooled magnetization). This difference is a consequence of nonlinearity based on the effect of H on Δ(tw). Superposition is preserved if Δ(tw) is linear in the Hamming distance Hd (proportional to the difference between the self-overlap qEA and the overlap q[Δ(tw)]). However, superposition is violated if Δ(tw) increases faster than linear in Hd. We have previously shown, through experiment and simulation, that the barriers Δ(tw) do increase more rapidly than linearly with Hd through the observation that the growth of ξ(t,tw;H) slows down as ξ(t,tw;H) increases. In this paper, we display the difference between the zero-field-cooled ξZFC(t,tw;H) and the thermoremanent magnetization ξTRM(t,tw;H) correlation lengths as H increases, both experimentally and through numerical simulations, corresponding to the violation of the extended principle of superposition in line with the finding of the Uppsala Group

    Quantifying memory in spin glasses

    No full text
    10 pages, 8 figuresRejuvenation and memory, long considered the distinguishing features of spin glasses, have recently been proven to result from the growth of multiple length scales. This insight, enabled by simulations on the Janus~II supercomputer, has opened the door to a quantitative analysis. We combine numerical simulations with comparable experiments to introduce two coefficients that quantify memory. A third coefficient has been recently presented by Freedberg et al. We show that these coefficients are physically equivalent by studying their temperature and waiting-time dependence
    corecore