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The extended principle of superposition has been a touchstone of spin-glass dynamics for almost 30 years. The
Uppsala group has demonstrated its validity for the metallic spin glass, CuMn, for magnetic fields H up to 10 Oe
at the reduced temperature Tr = T/Tg = 0.95, where Tg is the spin-glass condensation temperature. For H > 10
Oe, they observe a departure from linear response which they ascribe to the development of nonlinear dynamics.
The thrust of this paper is to develop a microscopic origin for this behavior by focusing on the time development
of the spin-glass correlation length, ξ (t, tw; H ). Here, t is the time after H changes, and tw is the time from the
quench for T > Tg to the working temperature T until H changes. We connect the growth of ξ (t, tw; H ) to the
barrier heights �(tw) that set the dynamics. The effect of H on the magnitude of �(tw) is responsible for affecting
differently the two dynamical protocols associated with turning H off (TRM, or thermoremanent magnetization)
or on (ZFC, or zero-field-cooled magnetization). This difference is a consequence of nonlinearity based on the
effect of H on �(tw). Superposition is preserved if �(tw) is linear in the Hamming distance Hd (proportional
to the difference between the self-overlap qEA and the overlap q[�(tw)]). However, superposition is violated if
�(tw) increases faster than linear in Hd. We have previously shown, through experiment and simulation, that
the barriers �(tw) do increase more rapidly than linearly with Hd through the observation that the growth of
ξ (t, tw; H ) slows down as ξ (t, tw; H ) increases. In this paper, we display the difference between the zero-field-
cooled ξZFC(t, tw; H ) and the thermoremanent magnetization ξTRM(t, tw; H ) correlation lengths as H increases,
both experimentally and through numerical simulations, corresponding to the violation of the extended principle
of superposition in line with the finding of the Uppsala Group.

DOI: 10.1103/PhysRevB.107.214436
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I. INTRODUCTION

The dynamics of spin glasses have had impact on a variety
of other physical systems [1] and now even extends into the
social sciences [2].
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One of the precepts of the dynamics is the so-called ex-
tended principle of superposition, first introduced in the papers
of the Uppsala Group [3–6]. In brief, it sets

MTRM(t, tw) + MZFC(t, tw) = MFC(0, tw + t ). (1)

Here, tw is the time after the spin glass has been quenched to
the working temperature T from above the condensation tem-
perature Tg until the magnetic field H is changed, and t is the
observation time after the change in H . MTRM(tw, t ) denotes
the thermoremanent magnetization: the spin-glass magneti-
zation for a temperature quench to the working temperature
T < Tg in the presence of a magnetic field H , at the time t
after H is cut to zero after the “waiting time” tw. MZFC(tw, t )
denotes the zero-field-cooled magnetization: the spin-glass
magnetization for a temperature quench in the absence of a
magnetic field H , at time t after H is applied after tw. Finally,
MFC(0, tw + t ) is the field cooled magnetization, recorded
continuously during the temperature quench to T and during
the sum of the times tw + t .

While Eq. (1) seems satisfying, the Uppsala group
noted that [5]: “...MZFC(h) exhibits a linear field depen-
dence...[and]...a nonlinear field dependence of MTRM(h)....”
This would lead to a violation of the principle of superpo-
sition as the magnetic field (h ≡ H) increases. Indeed, they
observed violation for both a metallic 5 at.% CuMn sample,
at H > 10 Oe [5], and for an amorphous metallic spin glass
(Fe0.15Ni0.85)75P16B6Al3 at H > 1 Oe [6].

In addition, deviations from linear response was observed
in the Ising spin glass Fe0.5Mn0.5TiO3 by Ito et al. [7] and in
Cu13.5Mn86.5 by Hudi et al. [8]. In both these works, using
lower and lower magnetic fields, the linear response regime
was entered, yielding identical relaxation functions for ZFC
and TRM protocols, and hence, satisfaction of the superposi-
tion principle, Eq. (1).

In the work described in this paper, we shall present the
microscopic origin of this difference between MZFC(tw, t ) and
MTRM(tw, t ) as H increases, leading to the breakdown of su-
perposition, through experiment and numerical simulations.
Our analysis will utilize the spin-glass correlation length
ξ (t, tw; H ) that grows from nucleation after the temperature
quench to T < Tg.

The growth rate of ξ (t, tw; H ) at the time t is set by the free
energy barriers �(tw) created by its growth during the waiting
time tw. The separation between states will be denoted by the
Hamming distance (Hd), and is defined below in Appendix A,
Eq. (A3). We shall show that, if the relationship is linear,
then Eq. (1) holds. If �(t, tw) increases more rapidly with
Hd than linear, then Eq. (1) is violated. The decay of the
TRM will then be slower than the rise of the ZFC, and the
departure from Eq. (1) will increase with increasing magnetic
field change and increasing tw. That �(t, tw) increases with
increasing ξ (t, tw; H ) has already been displayed by us [9],
where we showed that the growth of ξ (t, tw; H ) slows down
as ξ (t, tw; H ) grows.

Our analysis will show that the experimental method for
extracting ξ is more dependable in the ZFC protocol than in
the TRM setting. Indeed, we shall show that ξ , as obtained
for both protocols, behaves differently with time in a field.
Nevertheless, the two protocols become equivalent in the limit
of a vanishing magnetic field. The same conclusion is reached

from the microscopic computation of ξ that is discussed in
Sec. V, below.

The remaining part of this work is organized as follows.
The next section will introduce a phenomenological approach
based on the Hamming distance for outlining the effect of the
magnetic field on spin-glass dynamics. Section III will exhibit
experimental results for ξZFC(t, tw; H ) and ξTRM(t, tw; H ) for a
CuMn 8 at.% single crystal sample. Section IV will present a
quantitative relationship for the dependence of the free energy
barrier �(tw) on Hd from these experiments.

Section V will present the results of simulations on a
massive special purpose supercomputer, Janus II, for both
ξZFC(t, tw; H ) and ξTRM(t, tw; H ). Section V A will give details
of the simulations; Sec. V B will give the origin, and display
the failure, of the extended superposition principle at finite H .

Section VI displays the difference between the TRM and
ZFC protocol from a microscopic point of view. In Sec. VI A,
we evaluate the microscopic value for ξmicro(t, tw; H ) through
the replicon progator, comparing ZFC with TRM values; and
in Sec. VI B we unveil the difference between the two proto-
cols through the lens of the magnetic response. In Sec. VI C
we define an effective correlation length, proving that it mea-
sures quantities equivalent to the microscopical correlation
length. Section VII summarizes the conclusions of this paper,
and points to future investigations based on these results. The
paper concludes with eight Appendices.

II. A PHENOMENOLOGICAL APPROACH
BASED ON THE HAMMING DISTANCE

The beautiful solution of the mean-field Sherrington-
Kirkpatrick model [10] is a landmark in the physics of
disordered systems and gives rise to a theoretical picture that
is known by several names, such as the Replica Symmetry
Breaking or the hierarchical models of spin glasses. Unfor-
tunately, connecting this solution to experimental work is
not straightforward because of two major difficulties. First,
strictly speaking, the mean-field solution applies only to space
dimension higher than six (alas, experiments are carried out
in the three-dimensional world in which we live). How this
hierarchical picture needs to be modified in three dimensions
is a much-debated problem (see, e.g., Ref. [11] for an updated
account). The second, and perhaps more serious problem, is
related to the fact that this theory describes systems in thermal
equilibrium. Now, below the glass temperature, the correlation
length ξ of a system in thermal equilibrium is as large as the
system’s size. Unfortunately, because of the extreme slowness
of the time growth of ξ , the experimental situation is the oppo-
site: the sample size is typically much larger than ξ . Clearly,
some additional input is needed to connect the hierarchical
picture of the spin-glass phase with real experiments.

One such connecting approach is based on generalized
fluctuation-dissipation relations [12–19], which have been
also investigated experimentally for atomic spin glasses
[20,21]. Unfortunately, these relations focus on the linear
response to the magnetic field, while nonlinear relations will
be crucial to us.

An alternative approach was worked out in Ref. [22],
which explores the dynamics in an ultrametric tree of states.
A crucial quantity in this approach is the Hamming distance
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(Hd) between the state of the system after the initial prepa-
ration at time tw, and the state at the measuring time t + tw.
Yet, we still do not know how this Hamming distance should
be defined microscopically. We do have a surrogate that can
be obtained from a correlation function (this correlation func-
tion can be computed, see Appendix F 1, and experimentally
measured [20]). Unfortunately, the surrogate is not a fully
adequate substitute for the Hamming distance of Joh et al.
[22]. Nevertheless, the dynamics in the hierarchical tree does
provide useful intuition. This is why we briefly recall here its
main results and assumptions. The interested reader will find a
more complete account in Appendix A. In fact, we shall take
a further step because, at variance with Ref. [22], we shall
accept the possibility that barrier heights increase faster than
linearly with Hd (we shall work out the consequences of this
possibility as well).

There are many experimental protocols for exploring spin-
glass dynamics. As we explained in the Introduction, those
that involve the time change of the magnetization are the zero-
field-cooled magnetization (ZFC) and the thermoremanent
magnetization (TRM) protocols, generating MZFC(t, tw; H )
and MTRM(t, tw; H ), respectively. The basic concept in the
analysis will be the maximum free-energy barrier Δmax

between the involved states (see Appendix A). Take, for in-
stance, the TRM protocol. When the magnetic field H is cut
to zero, the system remembers its correlations achieved after
aging for the time tw. This generates an inflection point in the
time decay of MTRM(t, tw; H ) at t ≈ tw. This is exhibited as a
peak in the relaxation function [23],

S(t, tw; H )(ZFC/TRM) = (±)
d MTRM(t, tw; H )

d log t
, (2)

where the − sign pertains to TRM experiments and + sign
to ZFC experiments. The log of the time at which S(t, tw; H )
peaks, log t eff

H ,1 is thus a measure of Δmax. The activation time
is set approximately by the maximum barrier height reached
in the waiting time tw:

t eff
H = τ0 eΔmax(t=0,tw;H )/kBT , (3)

where τ0 is an exchange time of the order of h̄/kBTg, and
Δmax(t = 0, tw; H ) is the highest barrier created by the growth
of ξ (t = 0, tw; H ) in the time tw.

As Bouchaud has shown [24], when a magnetic field is
present the barrier heights Δ are reduced by a Zeeman energy
EZ:

Δ(t, tw; H ) = Δ(t, tw; 0) + EZ. (4)

For small magnetic field, EZ behaves as [24–28]:

EZ = −MFCH ≡ −χFCNcH2, (5)

where χFC is the field-cooled magnetic susceptibility per
spin when the spin glass is cooled in a magnetic field to
the measurement temperature T ; Nc is the number of cor-
related spins [spanned by the spin-glass correlation length,

1Here, and throughout the text, log is the natural logarithm; other-
wise, the logarithmic basis is explicitly indicated, i.e., log2.

ξZeeman(t, tw; H )],

Nc ≈ ξ
3−θ/2
Zeeman, (6)

where θ is the replicon exponent [28] (see also Appendix H),
and H is the applied magnetic field.2

III. ξTRM(t, tw; H ) AND ξZFC(t, tw; H ) FROM EXPERIMENT

In this section we will provide details of the experiments
and some theoretical background. After that, we will describe
the computation of ξTRM(t, tw; H ) and ξZFC(t, tw; H ) from
experiments.

A. Details of the experiments

The TRM and ZFC experiments were performed on 8 at.%
CuMn samples cut from the same single-crystal boule grown
at Ames Laboratory, and characterized in Ref. [9]. The TRM
experiments were performed both at the Indiana University of
Pennsylvania on a home-built SQUID magnetometer, capable
of sensitivity roughly an order of magnitude greater than com-
mercial devices, and at The University of Texas at Austin on
a Quantum Design commercial SQUID magnetometer. The
ZFC experiments were performed at The University of Texas
at Austin on the same equipment as the TRM.

B. Some analytical background

Both ZFC and TRM protocols use the time at which
S(t, tw; H ) peaks to be the measure of t eff

H , see Eq. (2) for
S(t, tw; H ) definition. The measurements were all made at
37.5 K, or a reduced temperature (Tg = 41.5 K) of Tr = 0.9.
Two waiting times were set at tw = 2500 s and 5000 s, testing
the growth law [31–33]

ξ (tw) = c1

(
tw
τ0

)c2(T/Tg )

, (7)

where c1 is a constant of order unity and c2 ≈ 0.104. The
time t eff

H at which S(t, tw; H ) peaks is indicative of the largest
barrier Δmax(tw; H ) surmounted in the time tw [3]. In the
H → 0 limit, S(t, tw; H ) peaks close to tw. The shift of the
peak of the relaxation function S(t, tw; H ) from tw to t eff

H as
H increases from zero is a direct measure of the reduction of
Δmax with increasing H [see Eq. (4)]. Thus, combining Eq. (3)
with Eq. (4):

Δmax − NcχH2 = kBT
[

log t eff
H − log τ0

]
, (8)

we can estimate the number of correlated spins, [i.e.,
ξZeeman(tw)], through the decay of the effective time t eff

H :

log
(
t eff
H

) ∝ ξ
3−θ/2
ZeemanH2. (9)

2Another view of EZ (Bert et al. [29]) relies on fluctuations in the
magnetization of all of the spins. They used EZ linear in H , replacing
Nc with

√
N c, and using the free spin value in place of χFC. A

very recent investigation of the magnetic field’s effect on spin-glass
dynamics, Paga et al. [30], shows that their fit to experiments can
also be ascribed to nonlinear effects introduced by their use of rather
large values of the magnetic field. We therefore shall use Eq. (5) in
our subsequent analysis.
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The above expression exploits the formalism introduced
by Joh et al. [25], which had a further development in
Refs. [30,34] considering scaling theory and nonlinear effects
as

log

[
t eff
H

t eff
H→0+

]
= Ŝ

2T
ξ (tw)D−(θ/2)H2

+ ξ (tw)−θ/2G(T, ξ (tw)D−(θ/2)H2). (10)

Here, ξ (tw) is the spin-glass correlation length, Ŝ is a constant
from the fluctuation-dissipation theorem (FDT), D = 3 is the
spatial dimension, and G(x) is a scaling function behaving as
G(x) ∼ x2 for small x. The replicon exponent θ is a function of
x̃ = �J(T )/ξ (tw), where �J (T ) is the Josephson length [9,35].
For notational simplicity, we have omitted this functional de-
pendence.

As the reader can notice, Eq. (9) neglects the O(H4) terms
in Eq. (10), and we have explicitly written ξZeeman in Eq. (9)
since we are referring to experiments. The general expression,
Eq. (10), will be treated in numerical sections.

Refs. [30,34] demonstrated how to connect experiments
to simulations, and vice versa, despite the range of time and
length scales, and the external magnetic fields. Further proof
of these equivalences is the first numerical evidence of the
exotic phenomena of rejuvenation and memory [36].

C. Checking ξTRM(t, tw; H ) < ξZFC(t, tw; H )

In this manner, the TRM and ZFC protocols generate
ξTRM(t, tw; H ) and ξZFC(t, tw; H ), respectively. The hypothe-
sized difference, ξTRM(t, tw; H ) < ξZFC(t, tw; H ), can then be
tested.

We expect that difference, if any, to be a result of an upward
curvature of Δ as a function of Hd, as outlined in the previous
section and in Appendix A. Figure 1 exhibits experimental
values of log t eff

H versus H2 for the 8 at.% CuMn sample, and
fits to the data for the ZFC and TRM protocols for waiting
times tw = 2500 s and tw = 5000 s at T = 37.5 K. Because
T = 37.5 K is so close to Tg, nonlinear terms are evident in
the data. As a consequence, the fits employ higher-order terms
in H as well as quadratic.

Appendix B presents data taken from another sample cut
from a 6 at.% CuMn single crystal boule with Tg = 31.5 K
at a measurement temperature of Tm = 26 K. The growth of
ξ (t, tw; H ) was slower for both ZFC and TRM protocols, lead-
ing to smaller values of the correlation lengths and therefore
smaller differences between ξTRM(tw) and ξZFC(tw), as com-
pared to those exhibited here in the main text. Nevertheless,
at the largest waiting time, the difference lies well outside the
sum of the error bars.

Fitting to the coefficients of the H2 terms for the 8 at.%
CuMn sample described above (see the respective tables
in Appendix C for specific values), we are able to extract
ξZFC(tw) and ξTRM(tw).

We find
ξZFC(tw = 2500 s) = 220(20),

ξTRM(tw = 2500 s) = 210(16),

ξZFC(tw = 5000 s) = 270(20),

ξTRM(tw = 5000 s) = 220(30), (11)

FIG. 1. A plot of data and fit for the effective waiting time t eff
H

(logarithmic scale) vs H2 for ZFC and TRM measurements on a
CuMn 8 at.% single crystal at tw = 2500, 5000 s and T = 37.5 K.
The polynomial fitting parameters for each of the values of H , up to
and including H4, are given in Tables VI–IX (see Appendix C). The
value of the correlation length is extracted from the H2 fitting terms.

all in units of the lattice constant a0. As hypothesized, the
magnitude of ξZFC(tw) exceeds ξTRM(tw). It must be noted,
however, that the difference lies well within the error bars for
tw = 2500 s, while the difference is just inside the sum of the
error bars for tw = 5000 s.

Our attempts at larger values of tw have not been success-
ful, as the S(t, tw; H ) curves broaden so much that it proved
too difficult to extract reproducible values for t eff

H . Smaller
values of tw were not attempted as the difference between
the ZFC and TRM correlation lengths would be smaller than
for tw = 2500 s and the error bars would obviate any reliable
conclusions.

The ratio for the respective values of ξ (t, tw; H ) as a func-
tion of waiting time, tw, is instructive. One finds

ξZFC(tw =5000 s)/ξZFC(tw =2500 s) = 1.26,

ξTRM(tw =5000 s)/ξTRM(tw =2500 s) = 1.06.

This confirms that ξTRM(t, tw; H ) grows more slowly than
ξZFC(t, tw; H ) with tw, indicating that the barrier heights en-
countered by ξ (t, tw, H ) are larger for TRM growth. This
is additional evidence that the dependence of Δ(tw) on Hd
curves upward.

All the measurements reported above were made with the
magnetic field H calibrated using a standard Pd sample pro-
vided by Quantum Design. The residual magnetic field was
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measured before each series of measurements, and the cooling
profile kept the same for both ZFC and TRM measurements.
The self-consistency of each data set, when combined with
calibration of H as described above, gives some confidence in
the differences between ξTRM(t, tw; H ) and ξZFC(t, tw; H ).

IV. EXPLICIT DEPENDENCE OF Δ(tw )
ON HAMMING DISTANCE (Hd)

We have organized this section as follow. First, we intro-
duce some experimental historical background on the relation
between barriers and the Hamming distance, and then we shall
describe our findings from our experiments.

A. Some background

The paper “Dynamics in spin glasses” by Lederman et al.
[37], as a consequence of detailed experiments on AgMn
(2.6 at.%), developed a quantitative relationship between the
change in Δ(tw) as a function of the change in Hd.3 Writing
out their Eq. (13) [see our Eq. (A6)],

Δ(Hd) − β(T )/α(T )

= [Δ(Hd0) − β(T )/α(T )]e[α(T )(Hd−Hd0 )], (12)

where Δ(Hd) − Δ(Hd0) is the change in barrier heights when
Hd increases from Hd0 to Hd. The coefficient in the exponent,
α(T ), was estimated from experiment to be approximately
38.1 at a reduced temperature of Tr = 0.865. Further, α(T )
and β(T ) are defined by

α(T ) = −2a(T )/(δqEA/δT ),

β(T ) = −2b(T )/(δqEA/δT ),
(13)

where qEA is the Edwards-Anderson self-overlap, and a(T )
and b(T ) are defined by an experimental fit,

(δΔ/δT )|T = a(T )Δ + b(T ). (14)

Figures 11 and 12 of Ref. [37] display a(T ) and b(T ), respec-
tively, for four representative values of T . For our purposes,
we are only interested in the ratio β/α, which, from Eq. (13),
is independent of δqEA/δT . Our working temperature is T =
37.5, or a reduced temperature Tr = 0.90. From Fig. 10 of
Lederman et al. [37], this leads to a ≈ 29.02 and b ≈ 684.03,
generating the ratio

β/α = b/a ≈ 23.57. (15)

3The only reference in the literature that contains a quantitative
relationship between the change in the barrier height encountered
in a waiting time tw and the Hamming distance is for AgMn. As
a consequence, we have used their relationship in our analysis for
CuMn. The point of the analysis is to demonstrate that for a doubling
of the waiting time tw, there is hardly a change in Hd. This, of course,
is representative of the remarkably slow dynamics encountered in
spin glasses. If there is a slight difference in the parameters extracted
from experiments for AgMn as compared to CuMn, then the actual
values of Hd would change, but not their order of magnitude.

B. Correlation lengths and Hamming
distances from our experiments

On the assumption that the ratios for AgMn are relevant to
CuMn, we can then address our data. At T = 37.5 K, we fit
the time at which S(t, tw; H ) peaks, t eff

H by

log
(
t eff
H

) = a0 + a2H2 + a4H4 + a6H6 + O(H8). (16)

Equation (16) can be converted to an energy scale by rewriting
as

kBT log(t eff
H /τ0) = kBT [a0 − log(τ0)]

+ kBT [a2H2 + a4H4 + a6H6 + O(H8)].
(17)

Dividing Eq. (17) by kBTg gives the energy scale in units of
kBTg. We define Δ0(tw) ≡ E0 = (T/Tg)[a0 − log(τ0)] as the
height of the last barrier encountered during a waiting time tw
in the absence of a magnetic field, and

En(tw; H ) = (T/Tg)an(tw)Hn, (18)

as the nth-order change in the barrier height’s free-energy
scale caused by the presence of the external magnetic field
at the waiting time tw. The ZFC experiments for tw =
2500 s yields ΔZFC

0 (tw = 2500 s) ≡ E0 = 33.55848 in units
of kBTg (see Table VI in Appendix C). The value for the
TRM experiments is ΔTRM

0 (tw = 2500 s) ≡ E0 = 33.58718
(see Table VII), which should be the same as for the
ZFC protocol, the slight difference being a result of fits
to the data. Likewise, for tw = 5000 s, Tables VIII and IX
give ΔZFC

0 (tw = 5000 s) ≡ E0 = 34.11658 and ΔTRM
0 (tw =

5000 s) ≡ E0 = 34.07752, respectively.
From these values, and Eqs. (12) and (15) with α(Tr =

0.90) = 46.97, we can arrive at δHd ≡ Hd − Hd0. We find

δHdTRM = 1.02 × 10−3,

δHdZFC = 1.16 × 10−3.
(19)

The small values of the difference in Hamming distances
for a doubling of the waiting times is an indication of the
slow growth of the correlation lengths with waiting times tw.
The equilibrium value of the Hamming distance [qαβ = 0 in
Eq. (A3)] is approximately 0.0575 (see below) so, even for
tw = 5000 s, the change in Hamming distance is still tiny.
To reach equilibrium would indeed require time scales of the
order of the age of the universe.

One can relate the correlation length ξ (tw) directly to Hd.
As shown above, the Hamming distance increases by unity for
each mutual spin flip, that is, for each reduction in qαβ by two.
Thus, ξ (tw) increases by a lattice constant for each mutual spin
flip. The volume of real space increases as [ξ (tw)]D−θ/2, where
D is the spatial dimension. This must equal the total number
of mutual spin flips, given by N × Hd(tw). See Appendix H
for a derivation of this equation using renormalization group
arguments.

Tables VI–IX, see Appendix C, give the correlation lengths
ξ (tw) for tw = 2500 and tw = 5000 s. From Eq. (19) the
change in Hd is known for both waiting times. One can there-
fore take the ratio of ξ (tw) for the two waiting times for each
protocol, and establish an absolute value for Hd(tw) at each
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value of tw. Expressed numerically,

ξ (tw = 5000 s)[D−(θ (tw=5000 s)/2)]

ξ (tw = 2500 s)[D−(θ (tw=2500)/2)]
= Hd5000

Hd2500

= Hd2500 + δHd

Hd2500
. (20)

To evaluate Eq. (20), it is necessary to know the respective
values of θ at T = 37.5 K. They are

θZFC(T = 37.5 K, tw = 2500 s) = 0.354,

θTRM(T = 37.5 K, tw = 2500 s) = 0.356,

θZFC(T = 37.5 K, tw = 5000 s) = 0.343,

θTRM(T = 37.5 K, tw = 5000 s) = 0.353.

(21)

Using the values of ξ (tw) from Tables VI–IX, and δHd from
Eq. (19), one obtains

HdTRM
tw=2500 = 5.64 × 10−3,

HdTRM
tw=5000 = 6.66 × 10−3,

HdZFC
tw=2500 = 1.20 × 10−3,

HdZFC
tw=5000 = 2.36 × 10−3.

(22)

The value of qEA at Tr = 0.90 is approximately 0.115, so that
the full Hamming distance at this temperature, from Eq. (A3)
with qαβ = 0, is 0.0575. The occupied phase space in our
experiments from the results exhibited in Eq. (22) therefore
spans only about 12% of the available phase space. The
slow growth of ξ (tw) is evidence that true equilibrium in the
spin-glass condensed phase can never be accomplished over
laboratory time scales, except perhaps at temperatures in the
immediate vicinity of Tg where qEA can become small.

It is also interesting to note from Eq. (22) that Hd for TRM
experiments is larger than for ZFC experiments. This is, of
course, consistent with our picture of the shift of the beginning
of aging from qEA for ZFC experiments to qEA − q(EZ) or,
equivalently from Hd = 0 to Hd(|EZ| = Δ) from Eq. (A4) for
TRM protocols as compared to ZFC protocols.

An important lesson from this analysis is that a true defi-
nition of ξ (tw) can be extracted only from a ZFC protocol. A
TRM protocol, assuming that Δ(tw) increases with Hd faster
than linearly, will generate a value for ξ (tw) that is a function
of the magnetic field. In that sense, though an average is
usually taken, the only meaningful protocol for extraction of
ξ (tw) is ZFC.

In the next two sections (Secs. V–VI), we will show results
from numerical simulations to

(1) Determine the microscopic features of a 3D spin glass
in the presence of an external magnetic field;

(2) Compute the difference between the magnetic re-
sponse to the thermoremanent magnetization (TRM) and the
zero-field-cooled (ZFC) protocols;

(3) Probe the equivalence between the microscopic cor-
relation length, ξmicro(tw), (calculated through the replicon
propagator, see Appendix E) and the effective correlation
length, ξZeeman (extracted through the lens of the magnetic
response).

TABLE I. Parameters for each of our numerical simulations:
Tm, tw, ξ (tw), the longest simulation time tmax, the replicon exponent
θ , and the value of Cpeak (tw) as defined and employed in the zero-
field-cooling protocol of Ref. [30,34]. The replicon exponent θ is a
function of x̃ = �J (T )/ξ (tw), where �J (T ) is the Josephson length
[9,35].

Tm tw ξ (tw, H =0) tmax θ (x̃) Cpeak (tw)

Run 1 0.9 222 8.294(7) 230 0.455 0.533(3)
Run 2 0.9 226.5 11.72(2) 230 0.436 0.515(2)
Run 3 0.9 231.25 16.63(5) 232 0.415 0.493(3)
Run 4 1.0 223.75 11.79(2) 228 0.512 0.422(2)
Run 5 1.0 227.625 16.56(5) 232 0.498 0.400(1)
Run 6 1.0 231.75 23.63(14) 234 0.484 0.386(4)
Run 7 0.9 234 20.34(6) 234 0.401 0.481(3)

V. ξTRM(t, tw; H ) AND ξZFC(t, tw; H ) FROM SIMULATIONS

This section is organized as follows. In Sec. V A we present
the details of the simulations carried out on the Janus II
supercomputer. In Sec. V B we shall assess the validity of
the extended superposition principle, see Eq. (1). Finally, we
conclude this section with the extraction of an effective corre-
lation length for both the ZFC and the TRM protocols using
the relationship relied upon through experiment. We present a
microscopic direct calculation of the correlation length.

A. Details of the simulations

We have carried out massive simulations on the Janus
II supercomputer [38] studying the Ising-Edwards-Anderson
(IEA) model on a cubic lattice, with periodic boundary con-
ditions and size L = 160 a0, where a0 is the average distance
between magnetic moments. The N = LD Ising spins, sx = ±
1, interact with their lattice nearest neighbors through the
Hamiltonian

H = −
∑
〈x,y〉

Jxysxsy − H
∑

x

sx, (23)

where the quenched disorder couplings are Jxy = ±1, with
50% probability. We name a particular choice of the cou-
plings a sample. In the absence of an external magnetic field
(H = 0), this model undergoes a spin-glass transition at a crit-
ical temperature in simulation units Tg = 1.102(3) [39]. We
study the off-equilibrium dynamics of the model (23) using a
Metropolis algorithm (one lattice sweep roughly corresponds
to one picosecond of physical time).

We have studied a single sample (see Refs. [30,34] for
sample variability studies). For each of the considered proto-
cols, we have developed 1024 statistically independent system
trajectories (termed replicas), except for Runs 6 and 7 in
Table I for which we have simulated 512 replicas. Further
simulation details can be found in Table I (the rationale for
our choices of temperatures and magnetic fields is explained
in Ref. [34]).

To follow the experimental protocols, the following proce-
dures were taken:

(1) For the TRM protocol, the initial random spin configu-
ration was placed instantaneously at the working temperature
Tm in a magnetic field H (direct quench). It was allowed to
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relax for a time tw in the presence of H , after which the
magnetic field was removed, and the magnetization,

MTRM(t, tw; H ) = 1

1603

∑
x

sx(t + tw; 0), (24)

as well as the temporal autocorrelation function,

CTRM(t, tw; H ) = 1

1603

∑
x

sx(tw; H )sx(t + tw; 0), (25)

were recorded.
(2) For the ZFC protocol, the initial random spin configu-

ration was placed instantaneously at the working temperature
Tm (direct quench) and allowed to relax for a time tw at
H = 0. At time tw, the magnetic field H was applied and the
magnetization,

MZFC(t, tw; H ) = 1

1603

∑
x

sx(t + tw; H ), (26)

as well as the temporal autocorrelation function,

CZFC(t, tw; H ) = 1

1603

∑
x

sx(tw; 0)sx(t + tw; H ), (27)

were computed.
Note that the autocorrelation function can be obtained ex-

perimentally as well in the TRM protocol [20]. Indeed, in the
limit H → 0, one has CTRM(t, tw; H ) ∝ 〈MTRM(tw)MTRM(t +
tw)〉, where 〈. . .〉 indicates the average over the thermal noise.
Although 〈MTRM(tw)MTRM(t + tw)〉 ∝ ∑

x,y 〈sx(tw; H )sy(t +
tw; 0)〉, the gauge invariance [40] of the Hamiltonian (23),
that holds for H → 0, ensures that only terms with x = y are
nonvanishing in the double sum.4

In Appendix D we discuss in detail the influence of using
different cooling protocols on observables measured in the
numerical part of this paper (direct cooling). The conclusion
of the Appendix is that we can use the direct quench protocol
to confront with the experimental studies.

B. The superposition principle breaks down
for finite magnetic fields

The experimental investigation of spin glasses is based on
ZFC and TRM protocols, which are related to each other in
the limit H → 0+ through Eq. (1).

In this section, we will show how the range of validity
for Eq. (1) works in numerical simulations which are de-
signed to mimic the single crystal TRM/ZFC experiments
(see Refs. [30,34] for details about the laboratory/numerical
simulation equivalence).

Let us rewrite the extended principle of superposition,
Eq. (1), for simplicity as

MTRM(t, tw) + MZFC(t, tw) = MFC(0, tw + t ).

We analyze separately the growth of the left-hand
side, MZFC(tw, t ) + MTRM(tw, t ), and the right-hand side,

4The null contribution (in average) of the cross terms x 
= y makes
〈MTRM(tw)MTRM(t + tw)〉 rather noisy, as it can be appreciated in
Ref. [20].
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FIG. 2. Growth of the rescaled magnetizations for differ-
ent experimental protocols: [MZFC(t, tw) + MTRM(t, tw)]/H , and
MFC(0, tw + t )/H . The lighter colors are referred to the FC case; the
darker ones are for the quantity ZFC + TRM. The vertical dashed
lines correspond to the effective times, t eff

H , associated with each case.
The violation of Eq. (1) is evident.

MZFC(0, tw + t ), of the above expression. As the reader no-
tices in Fig. 2, when the magnetic field increases, the violation
of Eq. (1) increases; and the field-cooled magnetization,
MFC(0, tw + t ), changes with time.

To characterize the violation of Eq. (1), let us define the
quantity

D(t, tw; H ) ≡ 1

H

(
MFC(0, tw + t )

− [MZFC(t, tw) + MTRM(t, tw)]
)
. (28)

If the extended super position principle, Eq. (1), is only valid
for H → 0, then we can hypothesize that D(t, tw; H ) could
behave as

D(t, tw; H ) = b2(tw; t )H2 + b4(tw; t )H4 + O(H6), (29)

where the coefficients b2(tw; t ) and b4(tw; t ) are some un-
known functions and O(H6) represents higher-order terms.

To test Eq. (29), we address the temporal behavior of the
rescaled quantity, D(t, tw; H ) T 2

m/H2,5 in Fig. 3.
In Fig. 3, we analyze two aspects:
(1) For a given waiting time tw [i.e., ξ (tw)], what is the

effect of increasing the magnetic field, H?
(2) For a given value of the external magnetic field, H =

0.02, what is the effect of changing the waiting time, tw, [i.e.,
ξ (tw)]?

The answer to the first question is straightforward. From
Fig. 3, increasing the magnetic field H causes the separation
between the H curves to increase as well. To the second
question, our understanding is that the violation of Eq. (1) is
caused by the difference between the time developments of
ξTRM(t, tw; H ) and ξZFC(t, tw; H ). The lack of a dependence on
tw in the b2(tw; t ) and b4(tw, t ) coefficients is consistent with

5We have rescaled the quantity D(t, tw; H ) by the temperature to
compare data at different temperatures
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FIG. 3. Nonlinear dependence of the rescaled quantity
D(t, tw; H ) T 2

m/H 2 as a function of time. For clarity, we have omitted
data at H = 0.01 (errors are larger than 100% for this field).

the expectation that the only tw dependence lies within the tw
dependence of the correlation lengths themselves. Otherwise,
there would be a tw dependence even in the H2 → 0 limit.
In the next subsection, we will emphasize and display the
difference between the TRM and ZFC protocols.

VI. DIFFERENCE BETWEEN THE ZFC
AND THE TRM PROTOCOLS

One of the main differences between experiments and
simulations is access to the microscopic spin configurations.
Equation (10) could be read as a bridge to connect the
macroscopic observable of the effective time t eff

H and the mi-
croscopic spin rearrangement ξmicro.

Numerically, we have easy access to the spin configu-
ration enabling us to calculate the microscopic correlation
length ξmicro(tw; H ) (see Appendix E for details). From the
experimental point of view, Eq. (10) determines an effective
correlation length, ξeff (tw; H2 → 0). See Secs. III above and
VI C below.

We shall follow two approaches to claim the same result:
The two experimental protocols are not equivalent, and the
presence, or absence, of an external magnetic field in the
thermal history of a spin glass is not negligible.

On the one hand, we analyze the effect of the external
magnetic field on the microscopic correlation length ξmicro

(directly accessible in simulations).
On the other hand, we follow the same experimental ap-

proach, see Sec. III, to evaluate the magnetic response through
the lens of the effective time t eff

H .
Finally, we conclude this section by showing the equiva-

lence between the microscopic correlation length, ξmicro(tw),
and the effective correlation length ξeff (tw) (which is also
experimentally measured) through Eq. (10).

A. Numerical approach: The effect of an external magnetic field
through the lens of the microscopical correlation length ξmicro(tw )

In the zero-field-cooled protocol, the system is cooled to
the working temperature Tm in the absence of an external

FIG. 4. The difference between the ZFC and TRM correlation
length is plotted against H2. (See Appendix E for the definition of
the microscopical correlation length). The main plot scale is log-log;
the insert has a linear scale for the ordinate. The ordering of the
different runs (see Table I) displays an increase of the difference with
increasing tw.

magnetic field, which is then switched on after a waiting time
tw. Thus, by definition, the ZFC protocol can be described by
its microscopic correlation length, ξZFC

micro(tw). The thermore-
manent protocol, conversely, brings the system to Tm in the
presence of an external magnetic field. This implies that each
run has its own ξTRM

micro(tw; H ) before H is turned off.
Thus, in Fig. 4 we display the difference between the

ZFC and TRM microscopic correlation length against H2.
As can be seen from Fig. 4, the difference ξZFC

micro(tw; H ) −
ξTRM

micro(tw; H ) approaches the H2 → 0+ limit with a linear
slope. The difference between the ZFC and TRM correlation
length appears to have the same behavior for different runs
(i.e., tw).

Under equilibrium conditions, and for large-enough cor-
relation lengths ξeq, there is a scaling theory between the
correlation length and an external field H [41,42]:

ξ (tw) ∝ H1/yH , 2 yH = D − θ/2, (30)

where D is the spatial dimension and θ is the replicon (see
also Appendix H).

This scaling behavior of ξ (tw) allows us to write the fol-
lowing rescaled relation for the two microscopic correlation
lengths

1 − ξTRM
micro(tw; H )/ξZFC

micro(tw)

= A(tw, T )
[
ξZFC

micro(tw))
]D−[θ (x̃)/2]

H2. (31)

In Fig. 5 we have tested that this scaling relation holds.
Finally remark that the logic behind the effect of the up-

ward curvature of Δ(tw) vs Hd, as suggested in Ref. [37],
and discussed in Sec. IV of this paper, requires that the
difference ξZFC(tw) − ξTRM(tw; H ) increases with increasing
waiting time tw. This is because Hd itself increases with tw,
and hence the barrier height difference between the ZFC and
TRM protocols increases with tw.
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FIG. 5. The plot displays the dependence as a rescaled
quantity [ξZFC

micro(tw) − ξTRM
micro(tw; H )]/ξZFC

micro(tw) against the function
H 2[ξZFC

micro(tw)]D−[θ (x̃)/2]. The main plot is in scale log-log; the insert
has the linear scale for the ordinate.

B. Experimental approach: Evaluation of the magnetic
response through the effective times

Now focus on the differences between the effective cor-
relation lengths (TRM and ZFC) computed following the
experimental approach. The effective waiting time, t eff

H , is
fitted through Eq. (16). Let us rewrite this equation, for the
TRM and ZFC protocols, as

log t eff
H (ZFC) = aZFC

0 + aZFC
2 (tw; H )H2 + O(H4),

log t eff
H (TRM) = aTRM

0 + aTRM
2 (tw; H )H2 + O(H4).

(32)

To isolate the correlation length contribution to the fit-
ting coefficient a2(tw; H ), and exploiting as well the physical
meaning of Eq. (10), we introduce the following notation:

a2(tw, T ) = −K ξ (tw)D−(θ/2), (33)

where ξ (tw) stands for ξmicro(tw; H = 0) and K is a generic
positive constant. As usual, we have dropped the temperature
dependence of the replicon exponent, θ . Below, and in the next
subsection, we shall give details about the constant K .

By definition, the value of ξ (tw; H → 0) is the same for
both ZFC and TRM through the zero-fitting coefficient a0.
Thus, taking the difference between the two terms in Eq. (32),
we obtain[

log t eff
H (ZFC) − log t eff

H (TRM)
]
/ξ (tw)D−(θ/2)

= −[KZFC − KTRM]H2 + O(H4). (34)

The above expression allows us to compare the two proto-
cols directly, avoiding a precise determination for each of the
coefficients, KZFC and KTRM. Moreover, Eq. (34) shows that
ξ (tw; H ) differs between ZFC and TRM by terms of the order
of H2.

For ease of notation, we define

log t eff
H (ZFC) − log t eff

H (TRM) ≡ δ log t eff
H . (35)

We exhibit the rescaled quantity T (δ log t eff
H )/[ξ (tw)]D−θ/2 as

a function of H2 in Fig. 6. A scaling behavior for ξ (tw) suffi-
ciently large is observed, as well as support for the principal

FIG. 6. The rescaled quantity T (δ log t eff
H )/[ξ (tw)]D−θ/2 as a

function of H2. The various run details are listed in Table I. The cor-
relation length ξ is the replicon correlation length ξmicro(t, tw; H = 0),
defined through Eqs. (E1)–(E3).

relationship explored in this paper:

KZFC > KTRM. (36)

This difference can be made quantitative by plotting the dif-
ferences of the rescaled fitting coefficients [aZFC

2 (tw, T ) −
aTRM

2 (tw, T )]/ξ (tw)D−θ/2 as a function of the waiting time; see
Fig. 7.

C. Comparison between the microscopic correlation length
ξmicro(tw; H ) and the effective correlation length ξeff (tw; H )

We will study the relation between the microscopic cor-
relation length (computed via the replicon propagator) and
the effective one, ξeff (tw), based on the fitting procedure in-
troduced in Sec. III. The aim of this study is to test the

FIG. 7. The difference between the ZFC and TRM decay
of the slope of the ratio log(t eff

H /t eff
H→0+ ) as a function of the

waiting time, tw. By definition, KZFC − KTRM = [aZFC
2 (tw, T ) −

aTRM
2 (tw, T )]/ξ (tw)D−θ/2; see Eq. (33). In Tables X and XI we report

the fitting coefficients a2(tw; T ).
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relationship:

ξmicro(tw; H = 0) � ξeff (tw; H2 → 0). (37)

Let us begin with the ZFC case where the correlation length
does not have any dependence on the external magnetic field.

According to the scaling function Eq. (10), the fitting coef-
ficient aZFC

2 (tw; T ), Eq. (16), behaves as

aZFC
2 (tw; H ) =

[
Ŝ

2Tm

]
ξ (tw)D−θ (x̂)/2. (38)

Therefore, taking into account Eq. (33), we can write

KZFC = − Ŝ

2 Tm
. (39)

We recall that this constant is positive.
Now, following the experimental procedure, see Sec. III,

we can define an effective correlation length by the ratio

aZFC
2 (tw, Tm )

aZFC
2 (t∗

w, Tm )
= KZFC(tw)

KZFC(t∗
w)

[
ξeff (tw, Tm )

ξmicro(t∗
w; Tm )

]D−θ (x̃)/2

, (40)

where KZFC(tw) = KZFC, see Eq. (39), and we have omitted
the ξ (tw) dependence of the replicon θ (x̃).

Thus, we define ξZFC
eff (tw, Tm ) as

ξZFC
eff (tw; Tm ) =

[
a2(tw, Tm )

a2(t∗
w, Tm )

]1/(D−θ (x̃)/2)

ξmicro(t∗
w, Tm ). (41)

The quantity ξmicro(t∗
w, Tm ) plays the role of a reference length

to avoid having to require a precise determination of the con-
stants in Eq. (38).

Let us now focus on the TRM protocol (see also Ap-
pendix F). Following the results of Sec. VI B, the equivalence
between the TRM and ZFC protocols does not hold. We quan-
tified the difference between the energetic barrier in the TRM
and ZFC protocol in Fig. 7. Let us formalize this difference as

KZFC − KTRM = B̃(tw). (42)

By manipulating the above expression, we can obtain an
expression for KTRM:

KTRM(tw) = KZFC − B̃(tw). (43)

Rewriting Eq. (41) for the TRM case as

aTRM
2 (tw, Tm )

aTRM
2 (t∗

w, Tm )
=

(
KTRM(tw)

KTRM(t∗
w)

)[
ξeff (tw, Tm )

ξmicro(t∗
w; Tm )

]D− θ (x̃)
2

, (44)

where KTRM(tw) has a weak dependence on the waiting time
tw [ see Fig. 7 and Eq. (43)].

We obtain

ξTRM
eff (tw; Tm ) =

[
aTRM

2 (tw, Tm )

aTRM
2 (t∗

w, Tm )

KTRM(t∗
w)

KTRM(tw)

] 2
2D−θ (x̃)

× ξmicro(t∗
w, Tm ). (45)

In Fig. 8, we report the comparison between ξeff (tw; H )
and ξmicro(tw; H ) as a function of the waiting time tw for both
the ZFC and TRM cases. By definition, the t∗

w taken as a
reference has exactly the same ξeff (t∗

w, T ) = ξmicro(t∗
w, T ). We

used as the reference t∗
w = 234 at Tm = 0.9 and t∗

w = 231.75 at
Tm = 1.0.

FIG. 8. Comparison between ξmicro(tw; H = 0) and
ξeff (tw; H 2 → 0) as a function of the waiting time tw. By definition of
ξeff (tw; H 2 → 0), see Eqs. (41) and (45), the t∗

w taken as a reference
has exactly the same ξeff (t∗

w, T ) = ξmicro(t∗
w, T ).

Given our lack of statistics, we could simulate only a single
sample for each case. The errors are calculated from thermal
fluctuations only. The numerical Ansatz of Eq. (37) is con-
firmed.

VII. CONCLUSION

This paper provides a definitive basis for the observations
of the Uppsala group regarding the generalized superposition
principle. It present quantitative evidence, both through exper-
iments and numerical simulations, on how the superposition
principle can be violated at finite magnetic fields. The use
of single crystals of CuMn enables experiments to exhibit
the consequences of very large spin-glass correlation lengths.
The power of the Janus II supercomputer allows us to extend
simulation times and length scales to values explored experi-
mentally. Both of these ingredients are vital for unveiling the
difference in the magnetic response of the two experimental
protocols that have been considered equivalent for more than
three decades.

We have found that the nonlinear dependence of the energy
barriers on the Hamming distance induces the breakdown of
the generalized superposition principle.

Furthermore, the scaling law introduced in Refs. [30,34]
has played the role of a touchstone for evaluation of the
magnetic response of a 3D spin glass. In Sec. VI C, we dis-
played the equivalence between the experimental extraction
of the correlation length through Eq. (F5) and the microscopic
calculation of ξ through the replicon propagator G(r, tw, T ).

The unique and extraordinary collaboration between ex-
periments, simulations, and theory has displayed once again
its potential for the investigation of complex systems, as for
the 3D spin glass. We look forward to continued investigation
of spin-glass dynamics, building on the results of this paper
as we examine the microscopic nature of such penomena as
rejuvenation and memory.

214436-10



SUPERPOSITION PRINCIPLE AND NONLINEAR … PHYSICAL REVIEW B 107, 214436 (2023)

ACKNOWLEDGMENTS

We are grateful for helpful discussions with S. Swin-
nea about sample characterization. This work was supported
in part by the U.S. Department of Energy (DOE), Office
of Science, Basic Energy Sciences, Materials Science and
Engineering Division, under Award No. DE-SC0013599,
and performed at the Ames Laboratory, which is operated
for the U.S. DOE by Iowa State University under Con-
tract No. DE-AC02-07CH11358. We were partly funded
as well by Ministerio de Ciencia, Innovación y Universi-
dades (Spain), Agencia Estatal de Investigación (AEI, Spain,
10.13039/501100011033), and European Regional Develop-
ment Fund (ERDF, A way of making Europe) through Grants
No. PID2022-136374NB-C21, No. PID2021-125506NA-I00,
No. PID2020-112936GB-I00, No. PID2019-103939RB-I00,
No. PGC2018-094684-B-C21 and PGC2018-094684-B-C22,
by the Junta de Extremadura (Spain) and Fondo Europeo
de Desarrollo Regional (FEDER, EU) through Grant No.
GR21014 and No. IB20079 and by the DGA-FSE (Diputación
General de Aragón –Fondo Social Europeo). The research
has received financial support from the Simons Foundation
(Grant No. 454949, G.P.) and ICSC–Italian Research Center
on High Performance Computing, Big Data and Quantum
Computing, funded by European Union–NextGenerationEU.
D.Y. was supported by the Chan Zuckerberg Biohub and
I.G.-A.P. was supported by the Ministerio de Ciencia, Inno-
vación y Universidades (MCIU, Spain) through FPU Grant
No. FPU18/02665. J.M.G. was supported by the Ministerio
de Universidades and the European Union NextGeneration
EU/PRTR through 2021-2023 Margarita Salas grant. I.P was
a post-doctoral fellow at the Physics Department of Sapienza
University of Rome during most part of this work (ERC Hori-
zon 2020, Grant No. 694925-LotglasSy G.P.).

APPENDIX A: CONTEXT FOR SEC. II

From a phenomenological point of view, Eq. (1) depends
upon the relationship between the barrier heights Δ(t, tw)
between states and their separation, termed the Hamming
distance (Hd), defined below in Eq. (A3). If the relationship
is linear, then Eq. (1) holds. If Δ(t, tw) increases more rapidly
than linear with Hd, then Eq. (1) will not hold for finite mag-
netic fields H . Under such conditions, the decay of the TRM
will be slower than the rise of the ZFC, and the departure from
Eq. (1) will increase with increasing magnetic field change
and increasing tw.

To explain these dynamics, it is helpful to employ a simple
phenomenological model that utilizes the concept of hierarchy
of ancestors of spin-glass states.

One can organize the states, and their ancestors, according
to ultrametric symmetry [10]. Immediately after a temperature
quench from above Tg to the measurement temperature Tm, the
spin-glass states have a “self-overlap” qαα (Tm ) ≡ qEA(Tm ),
the Edwards-Anderson order parameter [43]

qαα (Tm ) ≡ qEA(Tm ) = 1

N

∑
x

〈sx(t = 0)〉2
α, (A1)

where N is the number of (Ising) spins, x is the position
coordinate of spin s, and 〈· · · 〉α represents a thermal aver-

FIG. 9. Three representative spin-glass states at the measurement
temperature Tm are labeled α, β and γ . Their overlaps q, defined in
Eq. (A2), satisfy the ultrametric topology qαγ = qβγ � qαβ . The self-
overlap, qαα = qββ = qγ γ = qEA(T ), the Edwards-Anderson order
parameter at temperature T . Note that as q diminishes, the number of
states increases exponentially. When the temperature is lowered from
the quenched measuring temperature, Tm to Tm − δT , the states “foli-
ate” to daughter states, each of which now possesses the self-overlap
qEA(Tm − δT ). The states are designated by the symbols α1, α2, etc.
This figure is inspired by Fig. 9 of Ref. [53].

age restricted to a pure state α. Now, simple and physically
compelling as the above expression might look, we enter into
a true mathematical minefield by writing Eq. (A1). There are
difficulties of several kinds:

(1) The decomposition of the Boltzmann weight into a
sum over pure phases 〈· · · 〉α [44] holds only in the thermo-
dynamic limit.

(2) The random couplings make the process of taking the
thermodynamic limit highly nontrivial (the construction of the
metastate somewhat alleviates this problem [45–49]).

(3) The state α in Eq. (A1) is not an equilibrium state (as
assumed in the two bullet points above), but a dynamic state.
The characterization of the metastate in a dynamic context is
only incipient [50].

Similar caveats apply to Eq. (A2) below. In fact, this
Appendix should be read under the assumption that future
mathematical developments will make it possible to give a
precise meaning to expressions such as Eqs. (A1) and (A2).

Nevertheless, the self-overlap qEA(T ) can be computed
without recourse to the pure-state decomposition (see, e.g.,
Refs. [51,52]). One finds that, although qEA(T ) is zero at
T = Tg, it rapidly rises to unity as T → 0. As the waiting time
tw grows, the quenched initial state organizes from its param-
agnetic structure into a progressively growing spin-glass state.
This is expressed through a growing spin-glass correlation
length ξ (t, tw; H ), which is a function of the time elapsed from
quench. Here, tw is the time from quench to when a change in
magnetic field H occurs, and the time t begins just after the
change in magnetic field.

As ξ (t, tw; H ) grows, the overlap with the initial state qαβ

diminishes:

qαβ = 1

N

∑
x

〈sα
x (t = 0)sβ

x (t, tw; H )〉, (A2)

where the state has evolved from its initial quenched state
α(t = 0, tw = 0; H ) to β(t, tw; H ). This is pictured in Fig. 9
for a random ultrametric tree [53].
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FIG. 10. Hierarchical organization of metastable states. The
coarse-grained free-energy surface is represented at each level corre-
sponding to a given temperature. When the temperature is decreased,
each valley subdivides into others. The times tw and t ′

w which are
necessary to explore, at Tm and Tm − δT , respectively, the region of
phase space bounded by the same barriers are indicated. The closest
common ancestor to all states within the space bounded by Δ1 at Tm

and Tm − δT is the same, and its corresponding value of the overlap
function is q1. The sketch also shows that, as the system explores
more of phase space, it encounters ever increasing barrier heights,
and that the free-energy surface has a self-similar structure. This
figure is taken from Ref. [37].

The ultrametric structure in Fig. 9 was originally derived
for Parisi’s pure states, a small proportion of the total states
available to the spin-glass system. The barriers between states
were infinite, so that no dynamics were present. Experimen-
tally, as developed in Refs. [22,25], it was not only convenient,
but quantitative, to include states with finite barriers obeying
the same geometry between the pure states. In fact, experi-
ments over a limited temperature range were shown to display
a temperature dependence of barrier heights that could be
extrapolated to the pure state limit [54]. A representative
temperature-dependent organization of metastable states is
exhibited in Fig. 10.

We need some way to account for the distance between the
states exhibited in Fig. 9. We express a Hamming distance,
Hd, in terms of the departure of the overlap from qEA to qαβ .
By this construction, the Hamming distance, Hd, is

Hd = 1
2 (qEA − qαβ ). (A3)

One can intuitively think of a free-energy barrier separating
states of different qαβ as proportional to a distance between
them, as shown in Fig. 9. That is, the barrier heights should
increase as some function of decreasing qαβ or increasing
Hd. A relationship between Hd and barrier heights was first
developed by Vertechi and Virasoro [55]. In Fig. 1 of Ref. [55]
it is shown that there is an upward curvature in the relationship
between Δ and Hd that we shall argue below can be extracted
from experiment, and is exhibited in our simulations.

Consider now the Zeeman energy EZ in Eq. (4). Its effect
on barrier heights is treated equivalently by Bouchaud et al.

FIG. 11. A cartoon illustrating the dynamics associated with the
reduction of the barrier heights Δ(t, tw; H ) by the “Zeeman energy”
EZ [56]. The upper figure represents the system with magnetization
MFC, the field-cooled magnetization, while the lower figure repre-
sents the system at H = 0 with magnetization M = 0. See the text
for further explanation.

[27] and Joh etal. [25] in terms of a trap model and a barrier
model, respectively. One can visualize the effect on the barrier
heights using the pictorial description exhibited in Fig. 11 as
developed in Ref. [56].

The figure is meant to illustrate the dynamics associated
with a TRM protocol. A magnetic field H is applied to the
spin glass at a temperature above the condensation tempera-
ture Tg (or critical one). Without changing H , the system is
cooled to the working temperature Tm < Tg. The lower part
of the free energy of the system is then the upper part of
Fig. 11. All of the states in Fig. 11 between the barriers are
assumed to have the same magnetization. This assumption is
consistent with the near constancy in time of the field-cooled
magnetization in experiments, MFC(0, tw + t ) [see Eq. (1)]
[57]. The system is allowed to age at Tm for a time tw in the
presence of H . This results in the growth of the correlation
length ξ (t = 0, tw; H ) creating ever increasing barriers up to
the value Δ(t = 0, tw; H ) at the Hamming distance Hd(tw).

The effect of the magnetic field is expressed through the
Zeeman energy EZ, Eq. (5). Both models (trap/barrier) re-
duce the depth/height of all of the traps/barriers by the same
amount, EZ. In the barrier model, those barriers for which
Δ < |EZ| are assumed to vanish, so that the growth of the cor-
relation length begins at an Hd set by Δ = |EZ|. That means
that Hd(tw; H ) is larger than it would be at Hd(tw; H = 0).
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This point will be crucial when we compare ξ (t, tw; H ) for
TRM experiments with ZFC experiments.

In a TRM experiment, after aging for tw in the presence
of H , the field is cut to zero and the remanent magnetiza-
tion MTRM(t, tw; H ) measured. By construction in Fig. 11,
the states with magnetization MFC now are higher in energy
than for those with M = 0. There is an instantaneous decay of
those states in the MFC manifold for which Δ is less than EZ

to the ground M = 0 manifold (the “reversible magnetization”
change) [56]. The measurement time t begins when H is cut
to zero. Diffusion from the remaining occupied states to the
ground state (M = 0) reduces the magnetization in the (now)
higher-energy manifold as shown by the arrow in Fig. 11. The
exponentially increasing degeneracy exhibited in Fig. 9 leads
to the states with the highest barrier dominating the decay.

A consequence of Fig. 11 is that, in the presence of a
magnetic field H , the barriers are quenched for values of
Hd such that Δ(Hd) � |EZ| ≡ ΔEZ (Hd) with EZ defined by
Eq. (5). Equation (A3) can be written alternatively to take into
account this cancellation. Take qαβ (EZ) = qEA − q(EZ) to be
the value of qαβ at the value of q where Δ(q) = |EZ|. Then,
from Eq. (A3), the Hd has the value

Hd(|EZ| = Δ) = 1
2 [qEA − q(EZ)] (A4)

at the value of q for which |EZ| = Δ(q). The probability of
finding a value of q larger than q(EZ) is zero. That is, there
are no values of q larger than this value.

As a consequence, ξ (t = 0, tw; H ) grows from zero not
from q = 0 but rather from q = q(EZ) in a TRM experiment.
If Δ(tw) would depend linearly on Hd, equivalently on qαβ

from Eq. (A3), then there would be no difference in ξ (t =
0, tw; H ) between a TRM and a ZFC experiment. In both,
the growth of ξ (t = 0, tw; H ) would depend upon Hd in the
same manner. However, if instead Δ(t = 0, tw; H ) behaves as
drawn in Fig. 11, that is, experiences an upward curvature
as Hd increases, then beginning at a larger value of q in a
TRM protocol would mean that the growth of Δ(t = 0, tw; H )
would be slower for a TRM protocol than for a ZFC protocol.

Lederman et al. [37] found evidence for an upward curva-
ture of Δ as a function of Hd in a AgMn 2.6 at.% spin glass.
Using measurements of the temperature dependence of both
Δ and qEA, they extracted the ratio,

δΔ

δHd

∣∣∣∣
T

= α(T )Δ − β(T ), (A5)

where α(T ) and β(T ) are positive constants dependent only
on temperature. Integration of Eq. (A5) gives,

Δ(Hd) = Ceα(T )Hd + β(T )

α(T )
, (A6)

where C is an integration constant. Thus, as H increases, the
diffusion in the time tw encounters ever increasing barrier
heights for TRM protocols as compared to ZFC proto-
cols. This is the basis for our analysis that ξZFC(t, tw; H ) >

ξTRM(t, tw; H ) in the text.
Despite the tree-based picture providing a good qualitative

and even quantitative description of spin-glass experiments
[58], we will finish this section discussing theories that differ
from RSB in their predicted structure for the spin-glass phase:

the droplet model (DM), the Trivial-Nontrivial theory (TNT),
and the Chaotic pairs (CP) picture.

The droplet model states that the spin-glass phase is
composed of only two pure states (related by the inversion
symmetry). Certainly, the two states of the DM, when comple-
mented with the notion of temperature chaos, are successful
in describing the weak cooling-rate dependence found in ex-
periments (and in numerical simulations, see Appendix D).
However, other interesting experiments such as the memory
and rejuvenation effects [59], are difficult to describe within
the DM framework. Indeed, as discussed in Ref. [59], a more
complicated structure of fractal domains inside domains is the
least that one needs to account for memory and rejuvenation
(RSB’ space filling excitations would be an extreme example
of the “fractal within domain” picture).

Furthermore, the replicon exponent, that is used in practi-
cally all the analysis performed in this paper, is zero in the
DM, and the Hamming distance is trivial (because it takes
only two values). Finally, let us recall that in the DM the
dependence of the dynamic correlation length as a function
of time is given by ξ (tw ) ∼ [log tw]1/ψ , where ψ is the droplet
exponent, controlling the free-energy barriers in the dynamics,
instead of the power law of time found in experiments and
numerical simulations [35]. Besides, an extrapolation of Janus
results to the experimental length scale assuming the droplets
scaling found an aging rate much larger than experimentally
found [35].

As we said above, there are two other pictures of the
spin-glass phase, namely TNT and Chaotic Pairs. TNT has
no predictions regarding the out of equilibrium behavior of
spin glasses: it only states that the equilibrium probability
distribution of the overlap has the shape predicted by RSB
but the link overlap follows the DM prediction (it is trivial)
[60,61]. As for the Chaotic Pairs picture, it was introduced in
the (equilibrium) mathematical physics literature as a theory
with a dispersed metastate (as RSB). In fact, the CP picture
has not been developed outside the rigorous studies of spin
glasses in equilibrium [47].

APPENDIX B: RESULTS FROM ANOTHER
SINGLE CRYSTAL

In addition to the 8 at.% CuMn single-crystal sample with
Tm = 37.5 K (Tg = 41.5 K), the properties of which are re-
ported in the text, a 6 at.% CuMn single crystal sample was
measured at Tm = 26 K (Tg = 31.5 K). The lower measuring
temperature resulted in smaller values of ξ (t, tw; H ) because
of the attendant slow growth rate, leading to a smaller differ-
ence in the difference between ξZFC(tw; H ) and ξTRM(tw; H )
than for the Tm = 37.5 K measurements. Nevertheless, at the
largest waiting time, tw = 10000 s, the difference lies well
outside of the error bars.

The data are exhibited in Fig. 12 for the two values of the
waiting time, tw, at T = 26 K: tw = 3000 s and tw = 10 000 s,
for both the ZFC and TRM protocols.

From Fig. 12,

ξZFC(tw =3000) − ξTRM(tw =3000) = 3.8(4.8),

ξZFC(tw =10 000) − ξTRM(tw =10 000) = 7.7(2.6),
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FIG. 12. A plot of data and fit for the log of the effective waiting
time, t eff

w vs H 2 for ZFC and TRM measurements on a 6 at.% single
crystal at tw = 3000 and 10 000 s and T = 26 K (Tg = 31.5 K). The
polynomial fitting parameters for each of the values of H , up to and
including H4, are given in Tables II-V. The value of the correlation
length is extracted from the H2 fitting terms.

taking the sum of the extreme limits of the error bars. As-
suming that Δ(tw) increases faster than linearly with Hd, the
larger tw, the slower the growth of ξTRM(tw; H ), as can be
inferred from the shape of Δ versus Hd exhibited in Fig. 11 of
Appendix A. Thus, the difference ξZFC(tw) − ξTRM(tw) should
increase with increasing tw. The data from Fig. 12 in this
Appendix support this prediction: the difference ξZFC(tw =
10 000) − ξTRM(tw = 10 000) is much larger than ξZFC(tw =
3000) − ξTRM(tw = 3000), and well beyond the limits of the
error bars.

TABLE II. Converted energy scale for ZFC protocol at T = 26 K
with tw = 3000 s for various values of H expressed in Oersteds.
The En are the magnitude of the nth fitting parameter (including
the respective Hn) expressed in units of kBTg [see Eq. (18)]. The
correlation length ξZFC = 123(2) is derived from Eq. (9).

H E0 E2

22.0 30.85298 −0.04875
32.0 30.85298 −0.10313
47.0 30.85298 −0.22249
59.0 30.85298 −0.35060
67.0 30.85298 −0.45212
74.0 30.85298 −0.55153

TABLE III. Converted energy scale for TRM protocol at Tm =
26 K with tw = 3000 s for various values of H expressed in Oersteds.
The En are the magnitude of the nth fitting parameter (including
the respective Hn) expressed in units of kBTg [see Eq. (18)]. The
correlation length ξTRM = 120(3) is derived from Eq. (9).

H E0 E2

22.0 30.87475 −0.04457
32.0 30.87475 −0.09431
47.0 30.87475 −0.20344
59.0 30.87475 −0.32059
67.0 30.87475 −0.41342
74.0 30.87475 −0.50432

Thus, the measurements on the 6 at.% CuMn single crys-
tal at 26 K provide additional experimental evidence for the
assertion that ξZFC(tw) is larger than ξTRM(tw) to that exhibited
in the main text for an 8 at.% CuMn single crystal.

The tables analogous to Tables VI–IX for the 6 at.% single
crystal sample with Tm = 26 K, are listed in Tables II–V.

APPENDIX C: TABLES FOR SEC. IV

For the reader’s convenience we provide in Tables VI–IX
the numerical values used in the analysis reported in Sec. IV.

APPENDIX D: EXPERIMENTAL COOLING PROTOCOLS
AND NUMERICAL SIMULATIONS

The experimental cooling protocols are based on the cool-
ing of the system at a constant speed (e.g., Kelvin degrees
per minute) to reach the target temperature, usually in the
glassy region. In this work we present numerical results based
on a sudden or direct quench of the system; i.e., we start at
infinite temperature and suddenly we put the system at the
target temperature, or in other words, we are implementing an
infinite cooling speed.

One could argue that these two protocols (experimental
and direct quench ones) will produce different behaviors in
the measured quantities. In this Appendix we will discuss
this issue and we will conclude that one can use the direct
or sudden quench to study the system and to match with
experimental observables obtained with cooling protocols at
constant speed.

TABLE IV. Converted energy scale for ZFC protocol at Tm =
26 K with tw = 10 000 s for various values of H expressed in Oerst-
eds. The En are the magnitude of the nth fitting parameter (including
the respective Hn) expressed in units of kBTg [see Eq. (18)]. The
correlation length ξZFC = 135(1) is derived from Eq. (9).

H E0 E2

22.0 31.83377 −0.06386
32.0 31.83377 −0.13512
47.0 31.83377 −0.29148
59.0 31.83377 −0.45932
67.0 31.83377 −0.59233
74.0 31.83377 −0.72256
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TABLE V. Converted energy scale for TRM protocol at Tm =
26 K with tw = 10 000 s for various values of H expressed in Oerst-
eds. The En are the magnitude of the nth fitting parameter (including
the respective Hn) expressed in units of kBTg [see Eq. (18)]. The
correlation length ξTRM = 128(2) is derived from Eq. (9).

H E0 E2

22.0 31.82558 −0.05397
32.0 31.82558 −0.11418
47.0 31.82558 −0.24632
59.0 31.82558 −0.38816
67.0 31.82558 −0.50056
74.0 31.82558 −0.61061

In Ref. [62] we performed a throughout study on the depen-
dence of the dynamics on the cooling protocol. In particular
we studied the so-called direct quench and different annealing
ones (with different initial temperatures and cooling speeds)
for the three-dimensional Edwards-Anderson model in pres-
ence of a Gaussian external magnetic field with variances
H = 0.1 to 0.3. Let us notice that the model in presence of a
Gaussian magnetic field belongs to the same universality class
as the one having constant magnetic fields. The main findings
of this analysis were the following:

(1) Despite having different evolutions, the direct quench
and the different annealing protocols need the same time to
reach the equilibrium, just a bit below the critical temperature
in absence of magnetic field (see Fig. 3 of Ref. [62]). It is
important to quote that one of the observables we have studied
is just the staggered magnetization of the system, which is
the context of this paper corresponds with the field-cooled
magnetization.

(2) By fitting the dynamical behavior of the observables in
the glassy region using an stretched exponential we found that
the exponent (β) of this stretched exponential does not depend
on the annealing protocol. Moreover, the same happens for
the characteristic times of the dynamics (see Table III of
Ref. [62]).

TABLE VI. Converted energy scale for the ZFC protocol at T =
37.5 K for tw = 2500 s for various values of H expressed in Oersted.
The En are the magnitude of the nth fitting parameter (including
the respective Hn) expressed in units of kBTg [see Eq. (18)]. The
correlation length ξZFC = 220(20) is derived from Eq. (9).

H E0 E2 E4

10.0 33.55848 −0.06004 0.00169
16.0 33.55848 −0.15371 0.01109
22.0 33.55848 −0.29061 0.03963
24.9 33.55848 −0.37228 0.06504
27.5 33.55848 −0.45408 0.09676
29.8 33.55848 −0.53321 0.13342
32.0 33.55848 −0.61485 0.17741
36.3 33.55848 −0.79119 0.29376
40.2 33.55848 −0.97033 0.44185
43.7 33.55848 −1.14665 0.61701
47.0 33.55848 −1.32637 0.82558

TABLE VII. Converted energy scale for the TRM protocol at
Tm = 37.5 K for tw = 2500 s for various values of H expressed in
Oersted. The En are the magnitude of the nth fitting parameter (in-
cluding the respective Hn) expressed in units of kBTg [see Eq. (18)].
The correlation length ξTRM = 210(16) is derived from Eq. (9).

H E0 E2 E4

10.0 33.58718 −0.05392 0.00043
16.0 33.58718 −0.13804 0.00284
22.0 33.58718 −0.26099 0.01014
24.9 33.58718 −0.33433 0.01664
27.5 33.58718 −0.40780 0.02475
29.8 33.58718 −0.47886 0.03413
32.0 33.58718 −0.55218 0.04538
36.3 33.58718 −0.71055 0.07515
40.2 33.58718 −0.87143 0.11303
43.7 33.58718 −1.02978 0.15784
47.0 33.58718 −1.19117 0.21120

(3) At last, we have performed different works in which
we have compared the correlation length obtained in a
numerical simulation using a direct quench protocol with
those obtained in experiments with a constant speed cooling
protocol and the agreement has been very good (see, for
example, Refs. [28,30,34]).

Finally, in Fig. 2 is possible to see that the field-cooled
magnetization is growing with time in confront with the
typical experimental behavior of this magnitude, which is
essentially constant with time. The behavior of this observable
in numerical simulations is explained by the use of a direct
quench: we start the simulation with configuration with zero
magnetization, and this magnetization, evolving in a field,
must increase to reach the equilibrium value.

In Fig. 13 we have analyzed in detail the behavior of the
field-cooled magnetization from numerical simulations using
different annealing protocols as well as the direct quench
one. For slow annealing protocols we recover the behavior

TABLE VIII. Converted energy scale for the ZFC protocol at
Tm = 37.5 K for tw = 5000 s for various values of H expressed in
Oersted. The En are the magnitude of the nth fitting parameter (in-
cluding the respective Hn) expressed in units of kBTg [see Eq. (18)].
The correlation length ξZFC = 270(20) is derived from Eq. (9).

H E0 E2 E4 E6

10.0 34.11658 −0.11775 0.00540 −0.00011
16.0 34.11658 −0.30144 0.03536 −0.00181
22.0 34.11658 −0.56990 0.12639 −0.01225
24.9 34.11658 −0.73005 0.20740 −0.02575
27.5 34.11658 −0.89047 0.30857 −0.04673
29.8 34.11658 −1.04565 0.42548 −0.07567
32.0 34.11658 −1.20574 0.56574 −0.11602
36.3 34.11658 −1.55156 0.93680 −0.24721
40.2 34.11658 −1.90286 1.40904 −0.45602
43.7 34.11658 −2.24863 1.96763 −0.75252
47.0 34.11658 −2.60106 2.63275 −1.16470
50.3 34.11658 −2.97914 3.45374 −1.74999
56.2 34.11658 −3.71901 5.38225 −3.40443
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TABLE IX. Converted energy scale for the TRM protocol at
T = 37.5 K for tw = 5000 s for various values of H expressed in
Oersted. The En are the magnitude of the nth fitting parameter (in-
cluding the respective Hn) expressed in units of kBTg [see Eq. (18)].
The correlation length ξTRM = 220(30) is derived from Eq. (9).

H E0 E2 E4 E6

10.0 34.07752 −0.06364 0.00034 −0.00000
16.0 34.07752 −0.16292 0.00225 −0.00000
22.0 34.07752 −0.30801 0.00805 −0.00003
24.9 34.07752 −0.39457 0.01322 −0.00007
27.5 34.07752 −0.48127 0.01966 −0.00012
29.8 34.07752 −0.56514 0.02711 −0.00019
32.0 34.07752 −0.65166 0.03605 −0.00030
36.3 34.07752 −0.83856 0.05969 −0.00063
40.2 34.07752 −1.02843 0.08978 −0.00116
43.7 34.07752 −1.21530 0.12538 −0.00192
47.0 34.07752 −1.40578 0.16776 −0.00297
50.3 34.07752 −1.61012 0.22007 −0.00446
53.3 34.07752 −1.80791 0.27746 −0.00631
56.2 34.07752 −2.00999 0.34295 −0.00867

observed in experiments: the field-cooled magnetization is
essentially constant.

APPENDIX E: THE MICROSCOPICAL
CORRELATION LENGTH

Let us define the replicon propagator [63,64] as

GR(r, t, T )= 1

V

∑
x

(〈sx,t sx+r,t 〉T − 〈sx,t 〉T 〈sx+r,t 〉T )2. (E1)

The replicon correlator GR decays to zero in the long-distance
limit. We therefore compute ξmicro(tw; H ) by exploiting the

FIG. 13. Comparison of the behavior of field-cooling magnetiza-
tion for a direct quenched (DQ) for a L = 160 lattice (Janus reference
data for this paper, see Fig. 2) and a L = 32 one. In addition we have
plotted two different annealing protocols, named slow and quick an-
nealing (SA and QA respectively), both obtained in a L = 32 lattice.
The protocol of the SA was: Tmax = 2.25, Tmin = 1.0, �T = 0.25
and 216 − 2 sweeps at each temperature different from Tmin. The
parameters of the QA protocol are the same as in the SA one but we
have done 211 − 2 sweeps at each temperature. In all cases H = 0.02.

FIG. 14. A typical set of simulated relaxation functions,
STRM(t, tw; H ). The data are taken from Run 5, with Tm = 1.0
and tw = 227.625. Left: STRM(t, tw; H ) as a function of time. Right:
STRM(t, tw; H ) as a function of the temporal autocorrelation function
C(t, tw; H ). The dashed line indicates the value of Cpeak (tw) (see
Table I).

integral estimators [65,66]:

Ik (t ; T ) =
∫ ∞

0
d r rkG(r, t ; T ), (E2)

where

ξk,k+1(t, T ) = Ik+1(t, T )

Ik (t, T )
. (E3)

The ξ12(tw; T ) is designated as the microscopic correlation
length ξmicro(tw; T ).

APPENDIX F: EVALUATION OF THE RELAXATION
FUNCTION S(t, tw; H ) IN THE TRM PROTOCOL

In this Appendix, we want to convince the reader that the
two experimental protocols (TRM/ZFC), which are equiv-
alent in the H → 0 limit, can be treated with the same
numerical protocol developed in Refs. [30,34].

In Fig. 14, we exhibit a typical set of relaxation function
STRM(t, tw; H ), see Eq. (2) for its definition.

One key point unveiled in Refs. [30,34] was the possibility
to define the effective time t eff

H as the time when C(t, tw; H )
reaches the value Cpeak (tw):

C
(
t eff
H , tw; H

) = Cpeak (tw). (F1)

As shown in Fig. 15, this physical feature holds for the
TRM protocol as well.

In the following subsections, exploiting the behavior of
the Hamming distance, we will show how the value of the
effective time, t eff

H , is independent of the value of Cpeak (tw)
and unveils the physical meaning of Eq. (F1).

1. Hamming distance: Scaling

We extract the Hamming distance, or at least a surrogate
of it, from our knowledge of the temporal autocorrelation
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FIG. 15. Comparison between the TRM and the ZFC relax-
ation functions for Run 5, with Tm = 1.0 and tw = 227.625. The
empty points are for STRM(t, tw; H ), while the full dots are for the
SZFC(t, tw; H ). The dashed line displays the value for Cpeak (tw) (see
Table I). The ZFC points are taken from Refs. [30,34].

function C(t, tw; H ):

Hd(t, tw; H ) = 1
2 [1 − C(t, tw; H )]. (F2)

FIG. 16. Behavior of the rescaled time log(t/t eff
H ) as a function

of the Hamming distance Hd(t, tw; H ). The empty circles represent
the ZFC data, while the full triangles and joined with lines represent
the TRM data.

FIG. 17. The numerical ratio of log(t eff
H /t eff

H→0+ ) for the seven
runs defined in Table I for both the ZFC and TRM protocols. The
filled dots refer to the ZFC protocol; the empty squares to the TRM
protocol. The coefficients of the H2 fit, a2(tw; T ) from Eq. (F5) are
listed in Table X for the ZFC data, and Table XI for the TRM data.
The continuous lines represent the fit to the ZFC data, while the
dashed lines represent the fit to the TRM data. The ZFC data are
the same as in Refs. [30,34].

A discussion of the connection between the above numerical
Hamming distance and the dynamics in the ultrametric tree of
states is provided in Appendix G.

If one displays log(t/t eff
H ) as a function of Hd(t, tw; H ) at

the two simulation temperatures, T = 0.9 and T = 1.0, then
a scaling behavior is apparent from Fig. 16, with

log
{
t/t eff

H [Cpeak(tw)]
} = F[C(t, tw; H ), tw]. (F3)

The determination of the precise value for Cpeak (tw) is
not crucial because Cpeak (tw) changes log t eff

H (Cpeak ) only by
a constant. This implies that log t eff

H (Cpeak ) does not depend
upon H2.

Developing this important concept further, from Eq. (F3)
we can write

log

[
t eff
H (C)

t eff
H (Cpeak )

]
= F (C, tw) = log

[
t eff
H→0+ (C)

t eff
H→0+ (Cpeak )

]

⇒ log

[
t eff
H (C)

t eff
H→0+ (C)

]
= log

[
t eff
H (Cpeak )

t eff
H→0+ (Cpeak )

]
,

(F4)

implying that the value of the effective time, t eff
H , is indepen-

dent of the value of Cpeak (tw).

2. Extraction of the effective response time teff
H

In this Appendix, we extract the effective response time
t eff
H for the TRM cases, and we demonstrate the validity of the

scaling law in Eq. (10) for the TRM case as well. We show the
decay of t eff

H as a function of H2 in Fig. 17, along with those
for the ZFC protocol (see below). The data for log(t eff

H /t eff
H→0+ )

are fitted by the function

f (x) = a2(tw; T )x + O(x2), (F5)
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TABLE X. Results for the fit to Eq. (F5) for the ZFC data for the
time ratio log(t eff

H /t eff
H→0+ ). The fitting range is 0 � H2 � 0.0003.

T tw Coefficient Numerical value

0.9 222 a2 −5.01(14) × 102

0.9 226.5 a2 −1.54(2) × 103

0.9 231.25 a2 −4.13(11) × 103

0.9 234 a2 −6.78(13) × 103

1.0 223.75 a2 −1.29(2) × 103

1.0 227.625 a2 −3.25(3) × 103

1.0 231.75 a2 −7.48(17) × 103

where x = H2. Remember that a0 = log t eff
H→0+ . To avoid the

unphysical wild oscillations at large magnetic fields (recall
that H = 1 for the IEA model roughly corresponds to 5 × 104

Oe in physical units [34]), we define a unique fitting range in
the small x region, x = H2 ∈ [0, 0.0003]. Our fitting parame-
ters are displayed in Table X for the ZFC data, and Table XI
for the TRM data. Finally, in Fig. 18 we show that the scaling
law in Eq. (10) holds for both the ZFC and TRM protocols.

APPENDIX G: DISCUSSION OF EQ. (F2)

In a similar vein to Appendix A, we connect here the
dynamics in the abstract ultrametric tree of states with the
operational definition of the Hamming distance that we pro-
vided in Eq. (F2). We rely on an exponential increase in
the degeneracy of states with decreasing overlap qαβ from
their respective initial state as a consequence of an underlying
ultrametric topology of overlap space [10].

An initial state (at tw = 0) will evolve into new states as
time progresses. It is useful to define a distance, the Hamming
distance, in terms of the overlap of states as time progresses.
Consider three states α, β, and γ and their overlaps qαβ, qαγ ,
and qβγ [10]. Order them qαβ � qαγ � qβγ . The ultrametric
topology of the pure states, which we assign to metastable
states as well [54], results in qαβ � qαγ = qβγ .

Figure 9 is a pictorial representation of this relationship.
A tree is constructed in overlap space, with the level at Tm

representing the pure (metastable) states of the system at Tm.
The states are grouped in such a way that the ultrametric
topology is represented by the “branches” that connect the
states. Consider the first state (to the left) of the bottom level.
Its overlap with itself, qαα ≡ qEA, and its value is a function
of temperature as illustrated in Fig. 9. The next state, β, is

TABLE XI. Results for the fit to Eq. (F5) for the TRM data for
the time ratio log(t eff

H /t eff
H→0+ ). The fitting range is 0 � H2 � 0.0003.

T tw Coefficient Numerical value

0.9 222 a2 −6.77(11) × 102

0.9 226.5 a2 −1.52(2) × 103

0.9 231.25 a2 −3.60(14) × 103

0.9 234 a2 −5.84(16) × 103

1.0 223.75 a2 −1.06(1) × 103

1.0 227.625 a2 −2.64(3) × 103

1.0 231.75 a2 −5.65(22) × 103

FIG. 18. The nonlinear parts from the numerical response
time data, [log(t eff

H /t eff
H→0+ ) − c2(tw, T )H2]ξ θ (x̃)/2 plotted against

(ξD−θ (x̃)/2H 2)2. The abscissa of the main panel is in a linear scale,
showing an expanded view for small values of (ξD−θ (x̃)/2H 2)2. The
abscissa of the insert is in a log scale to report all of our numerical
data. The open squares refer to the ZFC data, while the filled squares
refer to the TRM data.

connected to α by a branch to the first level above the bottom,
diminishing q and so on. We represent the distance along
the level at Tm by the Hamming distance, Hd = (1/2)(qαα −
qαφ ) ≡ (1/2)(qEA − qαφ ) where φ represents some state fur-
ther along the bottom level.

We interpret the time evolution of the metastable states in
terms of diffusion along a level of the tree from the initial state
α to states with every diminishing overlap. The ultrametric
geometry of the state space leads to an exponential increase in
the number (degeneracy) of states encountered in time tw + t ,
as the overlap qαφ diminishes. We associate a barrier height
�αφ proportional to a function of the reduction in overlap
between states α and φ, and hence to a function of Hd. Thus, at
finite temperatures and times, tw + t , there will be a maximum
barrier overcome by the spin-glass system associated with a
minimum overlap qmin set by the time t + tw. This is borne
out experimentally (see Ref. [54]).

Thus, as time progresses, because of the exponential in-
crease in the number of states associated with minimum
overlap qαφ = qmin, essentially all of the decrease in the oc-
cupation of the initial state can be found in the occupation of
the states lying at a Hamming distance associated with states
of minimum overlap with state α. This allows us to write
Eq. (F2).

To summarize, the Hamming distance, Eq. (F2), expresses
the transfer of the population of the states of the spin glass
at t = 0, the time of the temperature quench to Tm, to the
population of states with minimum overlap with those states
at t = tw when the magnetic field H is turned off (TRM) or on
(ZFC).

APPENDIX H: SCALING BEHAVIOR
OF THE HAMMING DISTANCE

In this section we will rederive, in the framework of the
renormalization group [42], the dependence of the Hamming
distance with ξ .
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Since we are evolving at the minimum available overlap
(denoted as qmin), the dynamics is controlled by the repli-
con mode [67], which has the following correlation function
behaving, for large x, as [67]

〈q(x)q(0)〉q=qmin ∼ x−θ , (H1)

which defines the replicon exponent θ , already quoted in the
text, and the associated dimension (momentum) of the field
q(x), dim(q) = θ/2 [42].

If we turn on a magnetic field, then an additional term
appears in the Hamiltonian [68], that can be written in the
continuum as

+H2
∫

dDx q(x). (H2)

Using this equation, we can write the following relation
between the anomalous dimensions (in momentum) of the
observables H2 and q(x) (in the field theoretic approach the
Hamiltonian is dimensionless):

L0 = L−dim(H2 )+D−dim(q), (H3)

and then

D − dim(H2) − dim(q) = 0, (H4)

where, by Eq. (H1),

dim(H2) = D − θ/2. (H5)

The Zeeman energy is given by Eq. (H2)

EZ = H2
∫

dDx q(x) ≡ NeffH
2, (H6)

where Neff = ∫
dDx q(x) and it will evolve with ξ , accordingly

with their dimensions, as

Neff ∼ ξD−dim(q) ∼ ξ dim(H2 ) ∼ ξD−θ/2. (H7)

The Hamming distance, which is proportional to q, will
evolve with the dynamical correlation length scale as

LDHd ∼ ξ (D−dim(q)) ∼ ξ (D−θ/2) ∼ Neff , (H8)

which is the behavior of NHd derived in Sec. IV using another
approach (N = LD being the number of spins of the system).
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