15 research outputs found

    Étude des gènes de fusion MLL dans les leucémies aigues humaines

    Get PDF
    Les leucémies aigues sont la conséquence d’une prolifération clonale et maligne des cellules hématopoïétiques. Elles surviennent suite à un évènement oncogénique qui se produit dans une cellule souche hématopoïétique (CSH) ou progénitrice. Cela lui confère une certaine instabilité qui engendre l’accumulation d’autres évènements génétiques et/ou épigénétiques responsables du développement clinique de la maladie. Les leucémies MLL représentent environ 10% des leucémies aigues et aujourd’hui, plus de 70 gènes de fusion ont été caractérisés. Les sangs de cordon sont une source importante de CSH et progénitrices. La purification de ces cellules et leur transformation en cellules leucémiques à l’aide de gènes de fusion MLL nous permettent de générer des leucémies aigues humaines dans des souris immunodéficientes NSG et ainsi étudier le potentiel leucémique de différents gènes de fusion MLL. Dans un premier temps, 4 gènes de fusion MLL ont été étudiés : MLL-AF9, MLL-AF4, MLL-ENL et MLL-ELL. In vitro, nous sommes capables de transformer des CSH en cellules leucémiques capables de proliférer rapidement. Les résultats in vivo nous montrent qu’il est possible de générer des leucémies avec les oncogènes MLL-AF9 et MLL-ENL. Pour les fusions MLL-ELL et MLL-AF4, bien que quelques leucémies ont pu être obtenues, plusieurs problèmes techniques nous empêchent aujourd’hui de disposer d’un modèle adéquat permettant l’étude complète de ces oncogènes. Dans un second temps, les leucémies aigues MLL-AF9 ont été étudiées dans un modèle contrôlé où les cellules souches proviennent d’un donneur unique. Grâce à ce modèle, nous avons pu démontrer que l’oncogène MLL-AF9 est suffisant pour induire le développement de la maladie. En effet aucune nouvelle mutation n’a pu être identifiée au cours du développement de la leucémie. Parmi les leucémies myéloïdes aigues (LMA) MLL-AF9 issues de ce modèle, certains gènes non mutés, dont RET, ont été identifiés comme étant de potentiels biomarqueurs de ce sous-groupe de leucémie.Acute leukemias result from a clonal and malignant proliferation of hematopoietic cells. They arise following an oncogenic event which occurs in a hematopoietic stem cell (HSC) or progenitor cell. This generates instability, causing the accumulation of other genetic and/or epigenetic events leading to the clinical development of the disease. MLL leukemias represent approximately 10 % of acute leukemias, and nowadays more than 70 fusion genes have been characterized. Cord blood is an important source of both HSCs and progenitor cells. Purification of these cells and subsequent transformation into leukemic cells allows us to induce human acute leukemia via MLL fusion genes into NSG immunodeficient mice and thus to study the leukemic potential of different MLL fusion genes. Firstly, four MLL fusion genes were studied: MLL-AF9, MLL-AF4, MLL-ENL and MLL-ELL. In vitro, we are able to transform HSC into leukemic cells which display rapid growth. The in vivo results showed that it is possible to induce leukemia by means of MLL-AF9 and MLL-ENL oncogenes. For the MLL- AF4 and MLL-ELL fusions, although some leukemias have been obtained, several technical difficulties prevented us from having an adequate model for the study of these oncogenes. Secondly, MLL-AF9 acute leukemias were studied in a model where stem cells originate from a single donor. Based on this model, we have determined that the single MLL-AF9 oncogene is sufficient to initiate disease. Indeed, no new mutations were identified during leukemia development. Among the different MLL-AF9 acute myeloid leukemias (AML) generated from this model, a certain number of non-mutated genes, notably the RET, have been identified as potential biomarkers for this specific subgroup of leukemia

    FB5P-seq: FACS-Based 5-Prime End Single-Cell RNA-seq for Integrative Analysis of Transcriptome and Antigen Receptor Repertoire in B and T Cells

    No full text
    International audienceSingle-cell RNA sequencing (scRNA-seq) allows the identification, characterization, and quantification of cell types in a tissue. When focused on B and T cells of the adaptive immune system, scRNA-seq carries the potential to track the clonal lineage of each analyzed cell through the unique rearranged sequence of its antigen receptor (BCR or TCR, respectively) and link it to the functional state inferred from transcriptome analysis. Here we introduce FB5P-seq, a FACS-based 5′-end scRNA-seq method for cost-effective, integrative analysis of transcriptome and paired BCR or TCR repertoire in phenotypically defined B and T cell subsets. We describe in detail the experimental workflow and provide a robust bioinformatics pipeline for computing gene count matricesand reconstructing repertoire sequences from FB5P-seq data. We further present two applications of FB5P-seq for the analysis of human tonsil B cell subsets and peripheral blood antigen-specific CD4T cells. We believe th at our novel integrative scRNA-seq method will be a valuable option to study rare adap tive immune cell subsets in immunology research

    Diffuse pancreatic lesion mimicking autoimmune pancreatitis in an HIV-infected patient: successful treatment by antiretroviral therapy.

    No full text
    Pancreatitis is a common complication of acquired immunodeficiency syndrome. The most common causes of acute pancreatitis in an HIV population are medication and opportunistic infections.Case ReportsJournal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Single-Cell and Spatial Analyses Characterize Distinct Subsets of Malignant T Cells in Angioimmunoblastic T Cell Lymphoma

    No full text
    International audienceAbstract Introduction Angioimmunoblastic T-cell lymphoma (AITL) is the most frequent of nodal peripheral T-cell lymphomas. AITL results from the transformation of T follicular helper (T FH) cells and is characterized by chemo-resistance and poor survival (5-year OS around 30%). Recent data from prospective clinical trials suggest that disease outcome may be impacted by factors other than genomic features, such as the tumor microenvironment (TME) and overall intra-tumoral heterogeneity. Our understanding of AITL intra-tumoral genetic, transcriptional and functional heterogeneity is limited because most molecular data generated so far have come from bulk analyses. Single-cell RNA sequencing (scRNA-seq) enables fine characterization of cell types and functional cell states. When focused on T or B cells, 5'-end scRNA-seq also yields the TCR or BCR sequences that allow tracking clonally related cells. Here we studied the intra-tumor heterogeneity of AITL tumors using integrative scRNA-seq. Methods We analyzed lymph node live cell suspensions from AITL patients (n=10) using droplet-based 10x Genomics 5'-end scRNA-seq. Malignant T cells from 4 AITL samples were also analyzed by FACS index sorting and plate-based 5'-end scRNA-seq to link cell surface phenotype and gene expression profile. We identified malignant T cell clones by intersecting the gene expression and TCR sequencing data, and performed separate focused analyses of TME subsets and malignant T cells. We compared subsets of malignant T cells from all patients using marker gene-based metaclustering to identify AITL T cell states conserved across patients. We explored the genetic heterogeneity of malignant T cells by mapping RHOA G17V mutations and inferring copy number variation (CNV) subclones from scRNA-seq data. In select cases, we performed in situ analysis by immunohistochemistry (IHC) or spatial transcriptomics to characterize the spatial distribution of malignant T cell subsets identified by scRNA-seq. Results Based on gene expression, malignant T cells grouped in patient-specific clusters, while non-malignant T, B and myeloid TME cells from all patients clustered by cell type or cell state. Among TME cells, we identified 7 subsets of B cells (including activated B cells, plasma cells, and one patient-specific monoclonal B cell proliferation), 6 subsets of myeloid cells (including macrophages, conventional and plasmacytoid dendritic cells), and 8 subsets of non-malignant T cells (including activated cytotoxic T lymphocytes (CTL) with clonal expansions). Patient-specific malignant T cells were heterogeneous and divided into several gene-expression based clusters. Metaclustering of malignant T cell subsets identified T central memory (T CM)-like and T FH-like states in 10/10 samples. We also identified in 3/10 samples clusters of CTL-like malignant T cells expressing characteristic marker genes (including NKG7, GNLY, GZMK, PRF1). We observed an intra-sample continuum of gene expression states from quiescent T CM-like to proliferating T FH-like states. T FH-like cells were larger in size and expressed higher levels of surface PD1 and ICOS than T CM-like and CTL-like subsets. We detected the RHOA G17V mutation in malignant T cells of 4/4 mutated cases, with no evidence of subclonal heterogeneity for that mutation. We detected clonal and subclonal CNV in most AITL malignant T cells. CTL-like states were enriched in specific CNV subclones, but the T CM-like to T FH-like continuum was observed in all CNV subclones, suggesting that functional plasticity and subclonal genetic evolution may occur independently. In situ staining of markers for T FH-like (PD1, ICOS, CD200) and CTL-like (GZMK, GZMA) cells showed that T FH-like and CTL-like cells occupied distinct tissue niches within the tumor. In spatial transcriptomics analysis, T FH-like cells mapped to follicular dendritic cell (FDC)-rich areas, while T CM-like cells were associated with T-zone reticular cells. Conclusions Our analyses recapitulate known characteristics of AITL TME, and uncover previously unrecognized heterogeneity among malignant T cells across multiple patients. The distinct gene expression programs, phenotypes, genetics, and locations of T FH-like, T CM-like and CTL-like states suggest that AITL malignant T cells undergo significant functional plasticity and genetic divergence, which could influence response to therapy and overall clinical course. Figure 1 Figure 1. Disclosures Lemonnier: Institut Roche: Research Funding; Gilead: Other: travel grant. Gaulard: Gilead: Consultancy; Innate Pharma: Research Funding; Sanofi: Research Funding; Alderaan: Research Funding; Takeda: Consultancy, Honoraria. Milpied: Institut Roche: Research Funding; Innate Pharma: Research Funding; Bristol Myers Squibb: Research Funding

    A novel mouse model based on intersectional genetics enables unambiguous in vivo discrimination between plasmacytoid and other dendritic cells and their comparative characterization

    No full text
    Abstract Plasmacytoid dendritic cells (pDC) were identified about 20 years ago, based on their unique ability to rapidly produce copious amounts of all subsets of type I and type III interferon (IFN-I/III) upon virus sensing, while being refractory to infection. Yet, the identity and physiological functions of pDC are still a matter of debate, in a large part due to their lack of specific expression of any single cell surface marker or gene that would allow to track them in tissues and to target them in vivo with high specificity and penetrance. Indeed, recent studies showed that previous methods that were used to identify or deplete pDC also targeted other cell types, including pDC-like cells and transitional DC (tDC) that were proposed to be responsible for all the antigen presentation ability previously attributed to steady state pDC. Hence, improving our understanding of the nature and in vivo choreography of pDC physiological functions requires the development of novel tools to unambiguously identify and track these cells, including in comparison to pDC-like cells and tDC. Here, we report successful generation of a pDC-reporter mouse model, by using an intersectional genetic strategy based on the unique co-expression of Siglech and Pacsin1 in pDC. This pDC-Tomato mouse strain allows specific ex vivo and in situ detection of pDC. Breeding them with Zbtb46 GFP mice allowed side-by-side purification and transcriptional profiling by single cell RNA sequencing of bona fide pDC, pDC-like cells and tDC, in comparison to type 1 and 2 conventional DC (cDC1 and cDC2), both at steady state and during a viral infection, revealing diverging activation patterns of pDC-like cells and tDC. Finally, by breeding pDC-Tomato mice with Ifnb1 EYFP mice, we determined the choreography of pDC recruitment to the micro-anatomical sites of viral replication in the spleen, with initially similar but later divergent behaviors of the pDC that engaged or not into IFN-I production. Our novel pDC-Tomato mouse model, and newly identified gene modules specific to combinations of DC types and activations states, will constitute valuable resources for a deeper understanding of the functional division of labor between DC types and its molecular regulation at homeostasis and during viral infections

    Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia

    No full text
    International audienceNatural killer (NK) cells are innate cytotoxic lymphoid cells (ILCs) involved in the killing of infected and tumor cells. Among human and mouse NK cells from the spleen and blood, we previously identified by single-cell RNA sequencing (scRNAseq) two similar major subsets, NK1 and NK2. Using the same technology, we report here the identification, by single-cell RNA sequencing (scRNAseq), of three NK cell subpopulations in human bone marrow. Pseudotime analysis identified a subset of resident CD56bright NK cells, NK0 cells, as the precursor of both circulating CD56dim NK1-like NK cells and CD56bright NK2-like NK cells in human bone marrow and spleen under physiological conditions. Transcriptomic profiles of bone marrow NK cells from patients with acute myeloid leukemia (AML) exhibited stress-induced repression of NK cell effector functions, highlighting the profound impact of this disease on NK cell heterogeneity. Bone marrow NK cells from AML patients exhibited reduced levels of CD160, but the CD160high group had a significantly higher survival rate

    Novel mouse models based on intersectional genetics to identify and characterize plasmacytoid dendritic cells

    No full text
    Plasmacytoid dendritic cells (pDCs) are the main source of type I interferon (IFN-I) during viral infections. Their other functions are debated, due to a lack of tools to identify and target them in vivo without affecting pDC-like cells and transitional DCs (tDCs), which harbor overlapping phenotypes and transcriptomes but a higher efficacy for T cell activation. In the present report, we present a reporter mouse, pDC-Tom, designed through intersectional genetics based on unique Siglech and Pacsin1 coexpression in pDCs. The pDC-Tom mice specifically tagged pDCs and, on breeding with Zbtb46GFP mice, enabled transcriptomic profiling of all splenic DC types, unraveling diverging activation of pDC-like cells versus tDCs during a viral infection. The pDC-Tom mice also revealed initially similar but later divergent microanatomical relocation of splenic IFN+ versus IFN− pDCs during infection. The mouse models and specific gene modules we report here will be useful to delineate the physiological functions of pDCs versus other DC types

    TLR-9 agonist and CD40-targeting vaccination induces HIV-1 envelope-specific B cells with a diversified immunoglobulin repertoire in humanized mice.

    No full text
    The development of HIV-1 vaccines is challenged by the lack of relevant models to accurately induce human B- and T-cell responses in lymphoid organs. In humanized mice reconstituted with human hematopoietic stem cells (hu-mice), human B cell-development and function are impaired and cells fail to efficiently transition from IgM B cells to IgG B cells. Here, we found that CD40-targeted vaccination combined with CpG-B adjuvant overcomes the usual defect of human B-cell switch and maturation in hu-mice. We further dissected hu-B cell responses directed against the HIV-1 Env protein elicited by targeting Env gp140 clade C to the CD40 receptor of antigen-presenting cells. The anti-CD40.Env gp140 vaccine was injected with CpG-B in a homologous prime/boost regimen or as a boost of a NYVAC-KC pox vector encoding Env gp140 clade C. Both regimens elicited Env-specific IgG-switched memory hu-B cells at a greater magnitude in hu-mice primed with NYVAC-KC. Single-cell RNA-seq analysis showed gp140-specific hu-B cells to express polyclonal IgG1 and IgG3 isotypes and a broad Ig VH/VL repertoire, with predominant VH3 family gene usage. These cells exhibited a higher rate of somatic hypermutation than the non-specific IgG+ hu-B-cell counterpart. Both vaccine regimens induced splenic GC-like structures containing hu-B and hu-Tfh-like cells expressing PD-1 and BCL-6. We confirmed in this model that circulating ICOS+ memory hu-Tfh cells correlated with the magnitude of gp140-specific B-cell responses. Finally, the NYVAC-KC heterologous prime led to a more diverse clonal expansion of specific hu-B cells. Thus, this study shows that CD40-targeted vaccination induces human IgG production in hu-mice and provides insights for the development of a CD40-targeting vaccine to prevent HIV-1 infection in humans
    corecore