4 research outputs found

    Aflatoxin Levels in Locally Grown Maize from Makueni District, Kenya

    Get PDF
    Objectives: Investigations were carried out to determine aflatoxin levels in household maize in Makueni District and to correlate aflatoxin levels to maize drying and storage practices. Also, aflatoxin exposure in villages that reported aflatoxicosis cases in 2005 was compared with that in villages that did not report cases to assess whether aflatoxin exposure levels could be used to identify high-risk villages for targeted prevention interventions. Design: A cross-sectional study. Setting: Three divisions of Makueni district, Kibwezi, Makindu and Mtito Andei in Eastern Province, Kenya. Subjects: Ninety six households were surveyed, and 104 maize samples were analysed for total aflatoxin levels from June to July 2005. The households were selected from high and low aflatoxicosis risk areas. Results: Out of the 104 maize samples collected from 96 households, 37 (35.5%) had aflatoxin levels above the World Health Organisation (WHO) recommended maximum limit of 20 ppb. All of these samples were homegrown or purchased. Twenty one samples (20.1%) had levels above 100 ppb. Eleven (10.6%) had extremely high levels above 1,000 ppb. No relief supply maize had aflatoxin levels above the WHO maximum limit. Conclusion: High levels of aflatoxin in homegrown and purchased maize suggested that aflatoxin exposure was widespread. East African Medical Journal Vol. 85 (7) 2008: pp. 311-31

    Aflatoxin Levels in Locally Grown Maize from Makueni District, Kenya

    No full text
    Objectives: Investigations were carried out to determine aflatoxin levels in household maize in Makueni District and to correlate aflatoxin levels to maize drying and storage practices. Also, aflatoxin exposure in villages that reported aflatoxicosis cases in 2005 was compared with that in villages that did not report cases to assess whether aflatoxin exposure levels could be used to identify high-risk villages for targeted prevention interventions.Design: A cross-sectional study.Setting: Three divisions of Makueni district, Kibwezi, Makindu and Mtito Andei in Eastern Province, Kenya.Subjects: Ninety six households were surveyed, and 104 maize samples were analysed for total aflatoxin levels from June to July 2005. The households were selected from high and low aflatoxicosis risk areas.Results: Out of the 104 maize samples collected from 96 households, 37 (35.5%) had aflatoxin levels above the World Health Organisation (WHO) recommended maximum limit of 20 ppb. All of these samples were homegrown or purchased. Twenty one samples (20.1%) had levels above 100 ppb. Eleven (10.6%) had extremely high levels above 1,000 ppb. No relief supply maize had aflatoxin levels above the WHO maximum limit.Conclusion: High levels of aflatoxin in homegrown and purchased maize suggested that aflatoxin exposure was widespread

    Epidemiological investigation of a Rift Valley fever outbreak in humans and livestock in Kenya, 2018

    No full text
    On the last week of May of 2018, a community-based syndromic surveillance system detected mass abortions and deaths of young livestock in northeastern Kenya. Two weeks later, Rift Valley fever (RVF) was confirmed in humans presenting with febrile illness and hemorrhagic syndrome in the same region. A joint animal and human response team carried out an investigation to characterize the outbreak and identify drivers of disease transmission. Here, we describe the outbreak investigation and findings. A total of 106 human cases were identified in the months of May and June 2018: 92% (98) and 8% (8) of these cases occurring in the northern and western regions of Kenya, respectively. Seventy-six (72%) were probable cases, and 30 (28%) were laboratory confirmed by ELISA and/or PCR. Among the confirmed cases, the median age was 27.5 years (interquartile range = 20), and 60% (18) were males. Overall, the case fatality rate was 7% (n = 8). The majority of the confirmed cases, 19 (63%), reported contact with livestock during slaughter and consumption of meat from sick animals. All confirmed cases had fever, 40% (12) presented with hemorrhagic syndrome, and 23% (7) presented with jaundice. Forty-three livestock herds with at least one suspect and/or confirmed animal case were identified. Death of young animals was reported in 93% (40) and abortions in 84% (36) of livestock herds. The outbreak is indicative of the emergence potential of RVF in traditionally high- and low-risk areas and the risk posed by zoonosis to livestock keepers

    Building laboratory capacity to detect and characterize pathogens of public and global health security concern in Kenya

    No full text
    Since 1979, multiple CDC Kenya programs have supported the development of diagnostic expertise and laboratory capacity in Kenya. In 2004, CDC's Global Disease Detection (GDD) program within the Division of Global Health Protection in Kenya (DGHP-Kenya) initiated close collaboration with Kenya Medical Research Institute (KEMRI) and developed a laboratory partnership called the Diagnostic and Laboratory Systems Program (DLSP). DLSP built onto previous efforts by malaria, human immunodeficiency virus (HIV) and tuberculosis (TB) programs and supported the expansion of the diagnostic expertise and capacity in KEMRI and the Ministry of Health. First, DLSP developed laboratory capacity for surveillance of diarrheal, respiratory, zoonotic and febrile illnesses to understand the etiology burden of these common illnesses and support evidenced-based decisions on vaccine introductions and recommendations in Kenya. Second, we have evaluated and implemented new diagnostic technologies such as TaqMan Array Cards (TAC) to detect emerging or reemerging pathogens and have recently added a next generation sequencer (NGS). Third, DLSP provided rapid laboratory diagnostic support for outbreak investigation to Kenya and regional countries. Fourth, DLSP has been assisting the Kenya National Public Health laboratory-National Influenza Center and microbiology reference laboratory to obtain World Health Organization (WHO) certification and ISO15189 accreditation respectively. Fifth, we have supported biosafety and biosecurity curriculum development to help Kenyan laboratories safely and appropriately manage infectious pathogens. These achievements, highlight how in collaboration with existing CDC programs working on HIV, tuberculosis and malaria, the Global Health Security Agenda can have significantly improve public health in Kenya and the region. Moreover, Kenya provides an example as to how laboratory science can help countries detect and control of infectious disease outbreaks and other public health threats more rapidly, thus enhancing global health security
    corecore