3 research outputs found

    Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics

    Get PDF
    Background: most Ministries of Health across Africa invest substantial resources in some form of health management information system (HMIS) to coordinate the routine acquisition and compilation of monthly treatment and attendance records from health facilities nationwide. Despite the expense of these systems, poor data coverage means they are rarely, if ever, used to generate reliable evidence for decision makers. One critical weakness across Africa is the current lack of capacity to effectively monitor patterns of service use through time so that the impacts ofchanges in policy or service delivery can be evaluated. Here, we present a new approach that, for the first time, allows national changes in health service use during a time of major health policy change to be tracked reliably using imperfect data from a national HMIS.Methods: monthly attendance records were obtained from the Kenyan HMIS for 1 271 government-run and 402 faith-based outpatient facilities nationwide between 1996 and 2004. Aspace-time geostatistical model was used to compensate for the large proportion of missing records caused by non-reporting health facilities, allowing robust estimation of monthly and annualuse of services by outpatients during this period.Results: we were able to reconstruct robust time series of mean levels of outpatient utilisation of health facilities at the national level and for all six major provinces in Kenya. These plots revealed reliably for the first time a period of steady nationwide decline in the use of health facilities in Kenyabetween 1996 and 2002, followed by a dramatic increase from 2003. This pattern was consistent across different causes of attendance and was observed independently in each province.Conclusion: the methodological approach presented can compensate for missing records in health information systems to provide robust estimates of national patterns of outpatient service use. This represents the first such use of HMIS data and contributes to the resurrection of these hugely expensive but underused systems as national monitoring tools. Applying this approach to Kenya has yielded output with immediate potential to enhance the capacity of decision makers in monitoring nationwide patterns of service use and assessing the impact of changes in health policy and service deliver

    A local space–time kriging approach applied to a national outpatient malaria data set

    Get PDF
    Increases in the availability of reliable health data are widely recognised as essential for efforts to strengthen health-care systems in resource-poor settings worldwide. Effective health-system planning requires comprehensive and up-to-date information on a range of health metrics and this requirement is generally addressed by a Health Management Information System (HMIS) that coordinates the routine collection of data at individual health facilities and their compilation into national databases. In many resource-poor settings, these systems are inadequate and national databases often contain only a small proportion of the expected records. In this paper, we take an important health metric in Kenya (the proportion of outpatient treatments for malaria (MP)) from the national HMIS database and predict the values of MP at facilities where monthly records are missing. The available MP data were densely distributed across a spatiotemporal domain and displayed second-order heterogeneity. We used three different kriging methodologies to make cross-validation predictions of MP in order to test the effect on prediction accuracy of (a) the extension of a spatial-only to a space–time prediction approach, and (b) the replacement of a globally stationary with a locally varying random function model. Space–time kriging was found to produce predictions with 98.4% less mean bias and 14.8% smaller mean imprecision than conventional spatial-only kriging. A modification of space–time kriging that allowed space–time variograms to be recalculated for every prediction location within a spatially local neighbourhood resulted in a larger decrease in mean imprecision over ordinary kriging (18.3%) although the mean bias was reduced less (87.5%)
    corecore