13 research outputs found

    Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein.

    No full text
    International audienceRibosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1

    Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein.

    No full text
    International audienceRibosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1

    Mycobacterium tuberculosis ferritin:a suitable workhorse protein for cryo-EM development

    No full text
    The use of cryo-EM continues to expand worldwide and calls for good-quality standard proteins with simple protocols for their production. Here, a straightforward expression and purification protocol is presented that provides an apoferritin, bacterioferritin B (BfrB), from Mycobacterium tuberculosis with high yield and purity. A 2.12 Å resolution cryo-EM structure of BfrB is reported, showing the typical cage-like oligomer constituting of 24 monomers related by 432 symmetry. However, it also contains a unique C-terminal extension (164–181), which loops into the cage region of the shell and provides extra stability to the protein. Part of this region was ambiguous in previous crystal structures but could be built within the cryo-EM map. These findings and this protocol could serve the growing cryo-EM community in characterizing and pushing the limits of their electron microscopes and workflows.This research has also received funding from the Netherlands Organization for Scientific Research (NWO) in the framework of the National Roadmap NEMI project No. 184.034.01

    Structural Analysis of the Partially Disordered Protein EspK from Mycobacterium Tuberculosis

    No full text
    For centuries, tuberculosis has been a worldwide burden for human health, and gaps in our understanding of its pathogenesis have hampered the development of new treatments. ESX-1 is a complex machinery responsible for the secretion of virulence factors that manipulate the host response. Despite the importance of these secreted proteins for pathogenicity, only a few of them have been structurally and functionally characterised. Here, we describe a structural study of the ESX-secretion associated protein K (EspK), a 74 kDa protein known to be essential for the secretion of other substrates and the cytolytic effects of ESX-1. Small-Angle X-ray Scattering (SAXS) data show that EspK is a long molecule with a maximal dimension of 228 Å. It consists of two independent folded regions at each end of the protein connected by a flexible unstructured region driving the protein to coexist as an ensemble of conformations. Limited proteolysis identified a 26 kDa globular domain at the C-terminus of the protein consisting of a mixture of α-helices and β-strands, as shown by circular dichroism (CD) and SAXS. In contrast, the N-terminal portion is mainly helical with an elongated shape. Sequence conservation suggests that this architecture is preserved amongst the different mycobacteria species, proposing specific roles for the N- and C-terminal domains assisted by the middle flexible linker

    Interaction of the GTPase Elongation Factor Like-1 with the Shwachman-Diamond Syndrome Protein and Its Missense Mutations

    No full text
    The Shwachman-Diamond Syndrome (SDS) is a disorder arising from mutations in the genes encoding for the Shwachman-Bodian-Diamond Syndrome (SBDS) protein and the GTPase known as Elongation Factor Like-1 (EFL1). Together, these proteins remove the anti-association factor eIF6 from the surface of the pre-60S ribosomal subunit to promote the formation of mature ribosomes. SBDS missense mutations can either destabilize the protein fold or affect surface epitopes. The molecular alterations resulting from the latter remain largely unknown, although some evidence suggest that binding to EFL1 may be affected. We further explored the effect of these SBDS mutations on the interaction with EFL1, and showed that all tested mutations disrupted the binding to EFL1. Binding was either severely weakened or almost abolished, depending on the assessed mutation. In higher eukaryotes, SBDS is essential for development, and lack of the protein results in early lethality. The existence of patients whose only source of SBDS consists of that with surface missense mutations highlights the importance of the interaction with EFL1 for their function. Additionally, we studied the interaction mechanism of the proteins in solution and demonstrated that binding consists of two independent and cooperative events, with domains 2⁻3 of SBDS directing the initial interaction with EFL1, followed by docking of domain 1. In solution, both proteins exhibited large flexibility and consisted of an ensemble of conformations, as demonstrated by Small Angle X-ray Scattering (SAXS) experiments

    The crystal structure of the EspB-EspK virulence factor-chaperone complex suggests an additional type VII secretion mechanism in Mycobacterium tuberculosis

    No full text
    Pathogenic species from the Mycobacterium genus are responsible for a number of adverse health conditions in humans and animals that threaten health security and the economy worldwide. Mycobacteria have up to five specialized secretion systems (ESX-1 to -5) that transport virulence factors across their complex cell envelope to facilitate manipulation of their environment. In pathogenic species, these virulence factors influence the immune system's response and are responsible for membrane disruption and contributing to cell death. While structural details of these secretion systems have been recently described, gaps still remain in the structural understanding of the secretion mechanisms of most substrates. Here, we describe the crystal structure of M. tuberculosis ESX-1 secretion-associated substrate EspB bound to its chaperone EspK. We found that EspB interacts with the C-terminal domain of EspK through its helical tip. Furthermore, cryogenic electron microscopy, size exclusion chromatography analysis, and small angle X-ray scattering experiments show that EspK keeps EspB in its secretion-competent monomeric form and prevents its oligomerisation. The structure presented in this study suggests an additional secretion mechanism in ESX-1, analogous to the chaperoning of proline-glutamate (PE)-proline-proline-glutamate (PPE) proteins by EspG, where EspK facilitates the secretion of EspB in Mycobacterium species

    The crystal structure of the EspB-EspK virulence factor-chaperone complex suggests an additional type VII secretion mechanism in Mycobacterium tuberculosis

    No full text
    Pathogenic species from the Mycobacterium genus are responsible for a number of adverse health conditions in humans and animals that threaten health security and the economy worldwide. Mycobacteria have up to five specialized secretion systems (ESX-1 to ESX-5) that transport virulence factors across their complex cell envelope to facilitate manipulation of their environment. In pathogenic species, these virulence factors influence the immune system’s response and are responsible for membrane disruption and contributing to cell death. While structural details of these secretion systems have been recently described, gaps still remain in the structural understanding of the secretion mechanisms of most substrates. Here, we describe the crystal structure of Mycobacterium tuberculosis ESX-1 secretion-associated substrate EspB bound to its chaperone EspK. We found that EspB interacts with the C-terminal domain of EspK through its helical tip. Furthermore, cryogenic electron microscopy, size exclusion chromatography analysis, and small-angle X-ray scattering experiments show that EspK keeps EspB in its secretion-competent monomeric form and prevents its oligomerization. The structure presented in this study suggests an additional secretion mechanism in ESX-1, analogous to the chaperoning of proline-glutamate (PE)–proline-proline-glutamate (PPE) proteins by EspG, where EspK facilitates the secretion of EspB in Mycobacterium species
    corecore