21 research outputs found

    Detection and imaging of the oxygen deficiency in single crystalline YBa2_{\text{2}}Cu3_{\text{3}}O7δ_{\text{7}-\delta} thin films using a positron beam

    Full text link
    Single crystalline YBa2_{\text{2}}Cu3_{\text{3}}O7δ_{\text{7}-\delta} (YBCO) thin films were grown by pulsed laser deposition (PLD) in order to probe the oxygen deficiency δ\delta using a mono-energetic positron beam. The sample set covered a large range of δ\delta (0.191<δ\delta<0.791) yielding a variation of the critical temperature TcT_{\text{c}} between 25 and 90\,K. We found a linear correlation between the Doppler broadening of the positron electron annihilation line and δ\delta determined by X-ray diffraction (XRD). Both, the origin of the found correlation and the influence of metallic vacancies, were examined with the aid of ab-initio calculations that allowed us (i) to exclude the presence of Y vacancies and (ii) to ensure that positrons still probe δ\delta despite the potential presence of Ba or Cu vacancies. In addition, by scanning with the positron beam the spatial variation of δ\delta could be analyzed. It was found to fluctuate with a standard deviation of up to 0.079(5)0.079(5) within a single YBCO film

    Experimental Characterization of System Parameters for Ranging in IEEE 802.15.4a using Energy Detectors

    Get PDF
    The IEEE 802.15.4a standard for impulse radio ultrawide band (IR-UWB) communication systems defines a ranging scheme which relies on the measurement of the round-trip propagation time of electromagnetic pulses. Accuracy is strongly dependent on the estimation of the timeof-arrival (TOA) of the pulse that is spread in time due to multipath propagation. The major concern therefore is the proper detection of the leading edge. In this work, the ranging capabilities of the standard are analyzed for an energy detector receiver. Emphasis is put on the influence of transmitter and receiver parameters, which are evaluated for a set of measured scenarios. It is shown that sub-meter ranging accuracy can be achieved with fixed parameter settings

    Characterization of ion-irradiated ODS Fe-Cr alloys by doppler broadening spectroscopy using a positron beam

    Get PDF
    The damage profile of oxide dispersion strengthened steels after single-, or simultaneous triple-ion irradiation at different conditions has been characterized using a low energy positron beam in order to provide information on microstructural changes induced by irradiation. Doppler broadening and coincident Doppler broadening measurements of the positron annihilation line have been performed on different Fe-Cr-(W,Ti) alloys reinforced with Y2O3, to identify the nature and stability of irradiation-induced open-volume defects and their possible association with the oxide nanoparticles. It was found that irradiation induced vacancy clusters are associated with Cr atoms. The results are of highest interest for modeling the damage induced by 14 MeV neutrons in reduced activation Fe-Cr alloys relevant for fusion devices.This investigation was supported by the Ministerio de Ciencia e Innovación (Contract ENE2010-17462), and the European Commission through the European Fusion Development Agreement (Contract No. 09-240) and 7th FP through the “Research infrastructures” action of the “Capacities” Program, NMI3-II (Grant 283883). The authors acknowledge the JANNUS-Saclay team for their scientific and technological advice

    Interrelation between mechanical response, strain field, and local free volume evolution in glassy polymers: Seeking the atomistic origin of post-yield softening

    No full text
    A set of complementary experiments are used for the first time to elucidate the interrelation between the mechanical properties, the strain field, and the free volume evolution during non-homogenous compression of a glassy polymer. Two sets of quenched and annealed polystyrene samples, having different free volume histories, are notched and exposed to compression. The variation of both the strain field and the free volume are measured on a microscopic scale via digital image correlation in case of strain and Doppler broadening spectroscopy of positron annihilation line in case of free volume measurements. Eventually, the interplay between the local evolution of free-volume, the local strain field, and the mechanical response is investigated throughout the yielding, softening and plateau regions. We found that in all stages of plastic deformation the generated local strain field is positively correlated to the global strain independent of the active mechanism of plastic deformation. Moreover, the local change of free volume is not correlated to the mechanical response of the polymer at the softening stage. Therefore, the free volume evolution should not be responsible for the intrinsic post-yield softening behavior. The easy flow in the plateau region, however, begins at a particular fraction of free volume independent to the thermal history of samples

    Ring Trial on Quantitative Assessment of Bile Acids Reveals a Method- and Analyte-Specific Accuracy and Reproducibility

    No full text
    Bile acids are a key mediator of the molecular microbiome-host interaction, and various mass spectrometry-based assays have been developed in the recent decade to quantify a wide range of bile acids. We compare existing methodologies to harmonize them. Methodology for absolute quantification of bile acids from six laboratories in Europe were compared for the quantification of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) and conjugated products glycocholic acid (GCA) and taurocholic acid (TCA). For the bacterially modified secondary bile acids, the quantification of deoxycholic acid (DCA) and lithocholic acid (LCA) was compared. For the murine bile acids, we used the primary muricholic acids (alpha-MCA and, beta-MCA) and the intestinally produced secondary bile acid muricholic (omega-MCA). The standards were spiked into methanol:water (1:1) mix as well as in human and murine serum at either low concentration range (150-3000 nM) or high concentration range (1500-40,000 nM). The precision was better for higher concentrations. Measurements for the hydrophobic unconjugated bile acids LCA and omega-MCA were the most challenging. The quality assessments were generally very similar, and the comprehensive analyses demonstrated that data from chosen locations can be used for comparisons between studies
    corecore