10 research outputs found

    A characterization of the molecular phenotype and inflammatory response of schizophrenia patient-derived microglia-like cells

    Get PDF
    Different lines of evidence support a causal role for microglia in the pathogenesis of schizophrenia. However, how schizophrenia patient-derived microglia are affected at the phenotypic and functional level is still largely unknown. We used a recently described model to induce patient-derived microglia-like cells and used this to analyze changes in the molecular phenotype and function of myeloid cells in schizophrenia. We isolated monocytes from twenty recent-onset schizophrenia patients and twenty non-psychiatric controls. We cultured the cells towards an induced microglia-like phenotype (iMG), analyzed the phenotype of the cells by RNA sequencing and mass cytometry, and their response to LPS. Mass cytometry showed a high heterogeneity of iMG in cells derived from patients as well as controls. The prevalence of two iMG clusters was significantly higher in schizophrenia patients (adjusted p-value <0.001). These subsets are characterized by expression of ApoE, Ccr2, CD18, CD44, and CD95, as well as IRF8, P2Y(12), Cx3cr1 and HLA-DR. In addition, we found that patient derived iMG show an enhanced response to LPS, with increased secretion of TNF-alpha. Further studies are needed to replicate these findings, to determine whether similar subclusters are present in schizophrenia patients in vivo, and to address how these subclusters are related to the increased response to LPS, as well as other microglial functions

    The Tilburg Pregnancy Distress Scale revised (TPDS-R): Psychometric aspects in a longitudinal cohort study

    No full text
    Pregnant women may be specifically prone to experience pregnancy-specific distress, which has been associated with adverse maternal, pregnancy and child outcomes. Accurately identifying pregnancy-specific distress is thus crucial. The Tilburg Pregnancy Distress Scale (TPDS) - translated into many different languages - was previously developed to measure pregnancy-specific distress, resulting in a 16-item screening scale with a partner involvement dimension (PI) and a negative affect dimension (NA). A critical evaluation of the psychometric properties of the TPDS-NA items and feedback from pregnant women over the last decade has led to the need to revise the TPDS. Therefore, in the current study, we describe the procedure for revision and evaluate the psychometric properties of the revised TPDS (TPDS-R). More specifically, we describe the revision of the TPDS-R-PI (4 items) and the TPDS-R-NA (10 items: five-item pregnancy and five-item childbirth subcomponent). A sample of 1081 pregnant women participating in the Brabant Study completed the TPDS-R at 12, 20 and 28 weeks of pregnancy. An exploratory factor analysis and confirmatory factor analysis, descriptive statistics and repeated measures ANOVA demonstrated good test-retest reliability, concurrent validity, internal consistency, and construct validity of the TPDS-R. The TPDS-R provides a robust screening tool to accurately identify pregnant women at risk of pregnancy-specific distress

    The Tilburg Pregnancy Distress Scale revised (TPDS-R):Psychometric aspects in a longitudinal cohort study

    Get PDF
    Pregnant women may be specifically prone to experience pregnancy-specific distress, which has been associated with adverse maternal, pregnancy and child outcomes. Accurately identifying pregnancy-specific distress is thus crucial. The Tilburg Pregnancy Distress Scale (TPDS) - translated into many different languages - was previously developed to measure pregnancy-specific distress, resulting in a 16-item screening scale with a partner involvement dimension (PI) and a negative affect dimension (NA). A critical evaluation of the psychometric properties of the TPDS-NA items and feedback from pregnant women over the last decade has led to the need to revise the TPDS. Therefore, in the current study, we describe the procedure for revision and evaluate the psychometric properties of the revised TPDS (TPDS-R). More specifically, we describe the revision of the TPDS-R-PI (4 items) and the TPDS-R-NA (10 items: five-item pregnancy and five-item childbirth subcomponent). A sample of 1081 pregnant women participating in the Brabant Study completed the TPDS-R at 12, 20 and 28 weeks of pregnancy. An exploratory factor analysis and confirmatory factor analysis, descriptive statistics and repeated measures ANOVA demonstrated good test-retest reliability, concurrent validity, internal consistency, and construct validity of the TPDS-R. The TPDS-R provides a robust screening tool to accurately identify pregnant women at risk of pregnancy-specific distress

    Effects of severe acute respiratory syndrome coronavirus 2 infection on obstetric outcomes: Results from a prospective cohort in the Netherlands

    Get PDF
    Synopsis Results of a large prospective pregnancy cohort in the Netherlands show no association of severe acute respiratory syndrome coronavirus 2 infection prior to 28 weeks of gestation with adverse obstetric outcomes

    Effects of severe acute respiratory syndrome coronavirus 2 infection on obstetric outcomes: Results from a prospective cohort in the Netherlands

    No full text
    Results of a large prospective pregnancy cohort in the Netherlands show no association of severe acute respiratory syndrome coronavirus 2 infection prior to 28 weeks of gestation with adverse obstetric outcomes

    Image_2_The effect of SARS-CoV-2 infection and vaccination on Th17 and regulatory T cells in a pregnancy cohort in NYC.tiff

    No full text
    Disturbances in T-cells, specifically the Th17/Treg balance, have been implicated in adverse pregnancy outcomes. We investigated these two T-cell populations following pre-pregnancy and pregnancy SARS-CoV-2 infection and COVID-19 vaccination in 351 participants from a pregnancy cohort in New York City (Generation C; 2020-2022). SARS-CoV-2 infection status was determined via laboratory or medical diagnosis and COVID-19 vaccination status via survey and electronic medical records data. Peripheral blood mononuclear cells (PBMCs) were collected at routine prenatal visits throughout gestation (median 108 days; IQR 67-191 days) with repeated measures for 104 participants (29.6%). T-cell populations CD4+/CD3+, Th17/CD4+, Treg/CD4+ and the Th17/Treg ratio were quantified using flow cytometry. Results showed that inter-individual differences are a main influencing factor in Th17 and Treg variance, however total variance explained remained small (R2 = 15-39%). Overall, Th17 and Treg populations were not significantly affected by SARS-CoV-2 infection during pregnancy in adjusted linear mixed models (p>0.05), however comparison of repeated measures among SARS-CoV-2 infected participants and non-infected controls suggests a relative increase of the Th17/Treg ratio following infection. In addition, the Th17/Treg ratio was significantly higher after SARS-CoV-2 infection prior to pregnancy (10-138 weeks) compared to controls (β=0.48, p=0.003). COVID-19 vaccination was not associated with Th17 and Treg cells. Our findings suggest an impact of SARS-CoV-2 infection on the Th17/Treg ratio, likely depending on severity of infection, yet the observed trends and their potential consequences for pregnancy outcomes require further investigation. Our study contributes to growing evidence that COVID-19 vaccination during pregnancy does not lead to an exacerbated immune response.</p

    Image_1_The effect of SARS-CoV-2 infection and vaccination on Th17 and regulatory T cells in a pregnancy cohort in NYC.tiff

    No full text
    Disturbances in T-cells, specifically the Th17/Treg balance, have been implicated in adverse pregnancy outcomes. We investigated these two T-cell populations following pre-pregnancy and pregnancy SARS-CoV-2 infection and COVID-19 vaccination in 351 participants from a pregnancy cohort in New York City (Generation C; 2020-2022). SARS-CoV-2 infection status was determined via laboratory or medical diagnosis and COVID-19 vaccination status via survey and electronic medical records data. Peripheral blood mononuclear cells (PBMCs) were collected at routine prenatal visits throughout gestation (median 108 days; IQR 67-191 days) with repeated measures for 104 participants (29.6%). T-cell populations CD4+/CD3+, Th17/CD4+, Treg/CD4+ and the Th17/Treg ratio were quantified using flow cytometry. Results showed that inter-individual differences are a main influencing factor in Th17 and Treg variance, however total variance explained remained small (R2 = 15-39%). Overall, Th17 and Treg populations were not significantly affected by SARS-CoV-2 infection during pregnancy in adjusted linear mixed models (p>0.05), however comparison of repeated measures among SARS-CoV-2 infected participants and non-infected controls suggests a relative increase of the Th17/Treg ratio following infection. In addition, the Th17/Treg ratio was significantly higher after SARS-CoV-2 infection prior to pregnancy (10-138 weeks) compared to controls (β=0.48, p=0.003). COVID-19 vaccination was not associated with Th17 and Treg cells. Our findings suggest an impact of SARS-CoV-2 infection on the Th17/Treg ratio, likely depending on severity of infection, yet the observed trends and their potential consequences for pregnancy outcomes require further investigation. Our study contributes to growing evidence that COVID-19 vaccination during pregnancy does not lead to an exacerbated immune response.</p

    Image_4_The effect of SARS-CoV-2 infection and vaccination on Th17 and regulatory T cells in a pregnancy cohort in NYC.tiff

    No full text
    Disturbances in T-cells, specifically the Th17/Treg balance, have been implicated in adverse pregnancy outcomes. We investigated these two T-cell populations following pre-pregnancy and pregnancy SARS-CoV-2 infection and COVID-19 vaccination in 351 participants from a pregnancy cohort in New York City (Generation C; 2020-2022). SARS-CoV-2 infection status was determined via laboratory or medical diagnosis and COVID-19 vaccination status via survey and electronic medical records data. Peripheral blood mononuclear cells (PBMCs) were collected at routine prenatal visits throughout gestation (median 108 days; IQR 67-191 days) with repeated measures for 104 participants (29.6%). T-cell populations CD4+/CD3+, Th17/CD4+, Treg/CD4+ and the Th17/Treg ratio were quantified using flow cytometry. Results showed that inter-individual differences are a main influencing factor in Th17 and Treg variance, however total variance explained remained small (R2 = 15-39%). Overall, Th17 and Treg populations were not significantly affected by SARS-CoV-2 infection during pregnancy in adjusted linear mixed models (p>0.05), however comparison of repeated measures among SARS-CoV-2 infected participants and non-infected controls suggests a relative increase of the Th17/Treg ratio following infection. In addition, the Th17/Treg ratio was significantly higher after SARS-CoV-2 infection prior to pregnancy (10-138 weeks) compared to controls (β=0.48, p=0.003). COVID-19 vaccination was not associated with Th17 and Treg cells. Our findings suggest an impact of SARS-CoV-2 infection on the Th17/Treg ratio, likely depending on severity of infection, yet the observed trends and their potential consequences for pregnancy outcomes require further investigation. Our study contributes to growing evidence that COVID-19 vaccination during pregnancy does not lead to an exacerbated immune response.</p

    Table_1_The effect of SARS-CoV-2 infection and vaccination on Th17 and regulatory T cells in a pregnancy cohort in NYC.docx

    No full text
    Disturbances in T-cells, specifically the Th17/Treg balance, have been implicated in adverse pregnancy outcomes. We investigated these two T-cell populations following pre-pregnancy and pregnancy SARS-CoV-2 infection and COVID-19 vaccination in 351 participants from a pregnancy cohort in New York City (Generation C; 2020-2022). SARS-CoV-2 infection status was determined via laboratory or medical diagnosis and COVID-19 vaccination status via survey and electronic medical records data. Peripheral blood mononuclear cells (PBMCs) were collected at routine prenatal visits throughout gestation (median 108 days; IQR 67-191 days) with repeated measures for 104 participants (29.6%). T-cell populations CD4+/CD3+, Th17/CD4+, Treg/CD4+ and the Th17/Treg ratio were quantified using flow cytometry. Results showed that inter-individual differences are a main influencing factor in Th17 and Treg variance, however total variance explained remained small (R2 = 15-39%). Overall, Th17 and Treg populations were not significantly affected by SARS-CoV-2 infection during pregnancy in adjusted linear mixed models (p>0.05), however comparison of repeated measures among SARS-CoV-2 infected participants and non-infected controls suggests a relative increase of the Th17/Treg ratio following infection. In addition, the Th17/Treg ratio was significantly higher after SARS-CoV-2 infection prior to pregnancy (10-138 weeks) compared to controls (β=0.48, p=0.003). COVID-19 vaccination was not associated with Th17 and Treg cells. Our findings suggest an impact of SARS-CoV-2 infection on the Th17/Treg ratio, likely depending on severity of infection, yet the observed trends and their potential consequences for pregnancy outcomes require further investigation. Our study contributes to growing evidence that COVID-19 vaccination during pregnancy does not lead to an exacerbated immune response.</p

    Image_3_The effect of SARS-CoV-2 infection and vaccination on Th17 and regulatory T cells in a pregnancy cohort in NYC.tiff

    No full text
    Disturbances in T-cells, specifically the Th17/Treg balance, have been implicated in adverse pregnancy outcomes. We investigated these two T-cell populations following pre-pregnancy and pregnancy SARS-CoV-2 infection and COVID-19 vaccination in 351 participants from a pregnancy cohort in New York City (Generation C; 2020-2022). SARS-CoV-2 infection status was determined via laboratory or medical diagnosis and COVID-19 vaccination status via survey and electronic medical records data. Peripheral blood mononuclear cells (PBMCs) were collected at routine prenatal visits throughout gestation (median 108 days; IQR 67-191 days) with repeated measures for 104 participants (29.6%). T-cell populations CD4+/CD3+, Th17/CD4+, Treg/CD4+ and the Th17/Treg ratio were quantified using flow cytometry. Results showed that inter-individual differences are a main influencing factor in Th17 and Treg variance, however total variance explained remained small (R2 = 15-39%). Overall, Th17 and Treg populations were not significantly affected by SARS-CoV-2 infection during pregnancy in adjusted linear mixed models (p>0.05), however comparison of repeated measures among SARS-CoV-2 infected participants and non-infected controls suggests a relative increase of the Th17/Treg ratio following infection. In addition, the Th17/Treg ratio was significantly higher after SARS-CoV-2 infection prior to pregnancy (10-138 weeks) compared to controls (β=0.48, p=0.003). COVID-19 vaccination was not associated with Th17 and Treg cells. Our findings suggest an impact of SARS-CoV-2 infection on the Th17/Treg ratio, likely depending on severity of infection, yet the observed trends and their potential consequences for pregnancy outcomes require further investigation. Our study contributes to growing evidence that COVID-19 vaccination during pregnancy does not lead to an exacerbated immune response.</p
    corecore