21 research outputs found

    Soil structural degradation and nutrient limitations across land use categories and climatic zones in Southern Africa

    Get PDF
    Although soil degradation is a major threat to food security and carbon sequestration, our knowledge of the spatial extent of the problem and its drivers is very limited in Southern Africa. Therefore, this study aimed to quantify the risk of soil structural degradation and determine the variation in soil stoichiometry and nutrient limitations with land use categories (LUCs) and climatic zones. Using data on soil clay, silt, organic carbon (SOC), total nitrogen (N), available phosphorus (P), and sulfur (S) concentrations collected from 4,468 plots on 29 sites across Angola, Botswana, Malawi, Mozambique, Zambia and Zimbabwe, this study presents novel insights into the variations in soil structural degradation and nutrient limitations. The analysis revealed strikingly consistent stoichiometric coupling of total N, P, and S concentrations with SOC across LUCs. The only exception was on crop land where available P was decoupled from SOC. Across sample plots, the probability (φ) of severe soil structural degradation was 0.52. The probability of SOC concentrations falling below the critical value of 1.5% was 0.49. The probabilities of soil total N, available P, and S concentrations falling below their critical values were 0.95, 0.70, and 0.83, respectively. N limitation occurred with greater probability in woodland (φ = .99) and forestland (φ = .97) than in cropland (φ = .92) and grassland (φ = .90) soils. It is concluded that soil structural degradation, low SOC concentrations, and N and S limitations are widespread across Southern Africa. Therefore, significant changes in policies and practices in land management are needed to reverse the rate of soil structural degradation and increase soil carbon storage

    Effect of combining organic manure and inorganic fertilisers on maize–bush bean intercropping

    Get PDF
    In sub-Saharan Africa (SSA), farmers intercrop common beans with maize but apply inorganic or organic fertilisers targeting only maize. Effects of this practice on bush bean yield have not been fully evaluated with respect to input use and compatibility when intercropped with maize. An on-farm trial managed by smallholder community members was conducted to assess the influence of various soil fertility management options and cropping systems on the yield of two bush bean genotypes (SER45 and SER83) in two agro-ecological zones of Malawi. The farmer-managed trials were laid out in split-plot design, with the bean genotypes as main plots and a combination of the soil fertility management options (i.e., no input, manure, fertiliser and fertiliser + manure) and cropping systems (i.e., sole crop and intercrop) as subplots. The trials were affected by terminal drought and dry spells, but results show that manure and fertiliser application enhanced the resilience of the drought-tolerant bean genotypes. The genotype SER45 was responsive to manure application in the sole crop, giving a 44.4% yield increase over no-manure application. In sole cropping with fertiliser plus manure, bean yields improved by 40.1% for SER45 and 78.3% for SER83 relative to the no-input control. Although sole cropping had higher bean yields, the treatment with manure and fertiliser had a higher land equivalence ratio for intercrop of 1.54 for SER45 and 1.32 for SER83 over sole cropping. These results show that, under smallholder farmer management, the climate adaptability of bush bean genotypes could be enhanced by the combined application of organic and inorganic fertilisers in maize–bean intercrop. The combined application also enhances whole-farm productivity of the common maize–bean intercrop practice than monocrop, hence is of benefit to most low-input smallholder farmers of SSA

    Prevalence of mastitis in dairy cows from smallholder farms in Zimbabwe

    No full text
    A cross-sectional study was conducted to determine the prevalence of sub-clinical and clinical mastitis and the associated factors in cows from selected smallholder dairy farms in Zimbabwe. Physical examinations were conducted on all lactating cows for evidence of signs of clinical mastitis. Composite milk samples were collected from all lactating cows for bacterial culture and somatic cell counting. Cows were categorised as clinical if they exhibited clinical features of mastitis, or sub-clinical if no apparent signs were present but they had a positive bacterial isolation and a somatic cell count of at least 300 x 103 cells/mL. Farm-level factors were obtained through a structured questionnaire. The association of mastitis and animal- and herd-level factors were analysed using logistic regression. A total of 584 animals from 73 farms were tested. Overall, 21.1%(123/584) had mastitis, 16.3%(95/584) had sub-clinical mastitis and 4.8% (28/584) had clinical mastitis. Herd-level prevalence was 49.3%. Coagulase-negative staphylococci (27.6%), Escherichia coli (25.2%), Staphylococcus aureus(16.3%), Klebsiella spp. (15.5%) and Streptococcus spp. (1.6%) were the most common isolates. In individual cows, pure dairy herds (OR = 6.3) and dairy crosses (OR = 3.1) were more likely to have mastitis compared to Mashona cows. Farms that used pre-milking teat dipping were associated with reduced mastitis prevalence. Further research is needed on the prevalence of mastitis and a comparison of data for both smallholder and commercial dairy farms in all regions of Zimbabwe should be undertaken

    Awareness and adoption of land,soil and water conservation practices in the Chinyanja Triangle, Southern Africa

    No full text
    The promotion of land, soil and water conservation measures has been a widespread development in sub-Saharan Africa in a bid to tackle degradation and improve productivity. As a result, several governments have launched various campaigns on soil, land and water conservation measures. The aim of this study is to determine some of the factors that influence farmers’ awareness (knowledge) and adoption of land, soil and water conservation practices. Data for this study was collected from 312 households using a questionnaire survey in the Chinyanja Triangle of Southern Africa. The study sites were sampled from Tete province of Mozambique, central and southern regions of Malawi and eastern Province of Zambia. We used t-tests to classify adopters and non-adopters of soil, land and water conservation measures and binomial logit models to identify the factors that influence farmers’ knowledge of conservation measures and adoption of land productivity practices. The results show that the household head's age, education, agricultural advice reception and farmer group membership are critical in raising awareness. While the household head's age, education, agricultural advice reception, farmer group membership, pieces of land owned or used in production and land-to-man ratio influenced adoption decisions. The study, therefore, concludes that in order to improve land productivity in the Chinyanja Triangle, there is a need to consider farmers’ heterogeneity in terms of household head's age, level of education, extension services outreach, and socio-economic characteristics. This suggests that governments’ policies in the region should be aimed at improving farmers’ level of education, extension delivery that will target the elderly and the youth, land ownership, credit access, and social capital such as group formation

    Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa

    No full text
    This article is concerned with the adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on household income in the Chinyanja Triangle. Chinyanja Triangle is a region that is increasingly experiencing mid-season dry spells and an increase in occurrence of drought, which is attributed largely to climate variability and change. This poses high agricultural production risks, which aggravate poverty and food insecurity. For this region, adoption of small-scale irrigation farming as a climate-smart agriculture practice is very important. Through a binary logistic and ordinary least squares regression, this article determines factors that influence the adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on income among smallholder farmers. The results show that off-farm employment, access to irrigation equipment, access to reliable water sources and awareness of water conservation practices, such as rainwater harvesting, have a significant influence on the adoption of small-scale irrigation farming. On the other hand, the farmer’s age, distance travelled to the nearest market and nature of employment negatively influence the adoption of small-scale irrigation farming decisions. Ordinary least squares regression results showed that the adoption of small-scale irrigation farming as a climate-smart agriculture practice has a significant positive influence on agricultural income. We therefore conclude that to empower smallholder farmers to respond quickly to climate variability and change, practices that will enhance the adoption of small-scale irrigation farming in the Chinyanja Triangle are critical, as this will significantly affect agricultural income. In terms of policy, we recommend that the governments of Zambia, Malawi and Mozambique, which cover the Chinyanja Triangle, formulate policies that will enhance the adoption of sustainable small scale-irrigation farming as a climate-smart agriculture practice. This will go a long way in mitigating the adverse effects that accompany climate variability and change in the regio
    corecore