28 research outputs found

    Modelling Contamination of Raw Milk with Butyric Acid Bacteria Spores

    Get PDF
    Raw milk contains low concentrations of bacterial endospores, originating from the farm environment (e.g. soil, feeds, faeces). Spores of Clostridium tyrobutyricum, also called butyric acid bacterium (BAB), are of great interest to the dairy industry. They survive milk pasteurisation and cause off-flavours and texture defects in various cheese types. The contamination pathway of BAB spores is well known. Their primary origin is soil. In silage the number of spores will increase if conditions permit BAB growth. The spores are excreted in the cows faeces and are transferred to milk by contaminated teat surfaces. Many factors are involved in the contamination of milk with BAB spores. In this study, the contamination pathway was described using a combination of predictive models. The objective of the study was to quantitatively assess the importance of the different steps of the contamination pathway and to identify the most effective control points

    Phylogeny in Aid of the Present and Novel Microbial Lineages: Diversity in Bacillus

    Get PDF
    Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on 16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the 175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of Bacillus anthracis (153 strains), B. cereus (211 strains), B. thuringiensis (108 strains), B. subtilis (271 strains), B. licheniformis (131 strains), B. pumilus (83 strains), B. megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains) and B. halodurans (36 strains) were considered for generating species-specific framework and probes as tools for their rapid identification. Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025, 16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10 Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed

    Effective Heat Inactivation of Mycobacterium avium subsp. paratuberculosis in Raw Milk Contaminated with Naturally Infected Fecesâ–¿

    No full text
    The effectiveness of high-temperature, short holding time (HTST) pasteurization and homogenization with respect to inactivation of Mycobacterium avium subsp. paratuberculosis was evaluated quantitatively. This allowed a detailed determination of inactivation kinetics. High concentrations of feces from cows with clinical symptoms of Johne's disease were used to contaminate raw milk in order to realistically mimic possible incidents most closely. Final M. avium subsp. paratuberculosis concentrations varying from 102 to 3.5 × 105 cells per ml raw milk were used. Heat treatments including industrial HTST were simulated on a pilot scale with 22 different time-temperature combinations, including 60 to 90°C at holding (mean residence) times of 6 to 15 s. Following 72°C and a holding time of 6 s, 70°C for 10 and 15 s, or under more stringent conditions, no viable M. avium subsp. paratuberculosis cells were recovered, resulting in >4.2- to >7.1-fold reductions, depending on the original inoculum concentrations. Inactivation kinetic modeling of 69 quantitative data points yielded an Ea of 305,635 J/mol and an lnk0 of 107.2, corresponding to a D value of 1.2 s at 72°C and a Z value of 7.7°C. Homogenization did not significantly affect the inactivation. The conclusion can be drawn that HTST pasteurization conditions equal to 15 s at ≥72°C result in a more-than-sevenfold reduction of M. avium subsp. paratuberculosis

    Effect of exogenous proline, betaine, and carnitine on growth of Listeria monocytogenes in a minimal medium.

    No full text
    Three Listeria monocytogenes strains isolated from food or food-processing environments were used to assess the response of this species to salinity in a chemically defined minimal medium. Growth in a minimal medium containing five essential amino acids and glucose as a carbon and energy source was comparable to growth in a rich medium (brain heart infusion broth). In the absence and presence of 3% NaCl the final cell numbers reached in minimal medium were 10(9) and 10(7) CFU/ml, respectively. Growth under the latter conditions could not be detected by spectrophotometry by measuring A660. Apparently, this technique was not suitable for these experiments since the detection level was > 10(7) CFU/ml. Exogenously added proline (10 mM), trimethylglycine (betaine) (1 mM), and beta-hydroxy-gamma-N-trimethyl aminobutyrate (carnitine) (1 mM) significantly stimulated growth under osmotic stress conditions in minimal medium at both 37 and 10 degrees C. Betaine and carnitine are present in foods derived from plants and animals, respectively. Therefore, these compounds can contribute significantly to growth of L. monocytogenes in various foods at high osmolarities
    corecore