164 research outputs found

    Colour reconnections in Herwig++

    Get PDF
    We describe the implementation details of the colour reconnection model in the event generator Herwig++. We study the impact on final-state observables in detail and confirm the model idea from colour preconfinement on the basis of studies within the cluster hadronization model. Moreover, we show that the description of minimum bias and underlying event data at the LHC is improved with this model and present results of a tune to available data.Comment: 19 pages, 21 figures, 2 tables. Matches with published versio

    NLO QCD corrections in Herwig++ with MC@NLO

    Get PDF
    We present the calculations necessary to obtain next-to-leading order QCD precision with the Herwig++ event generator using the MC@NLO approach, and implement them for all the processes that were previously available from Fortran HERWIG with MC@NLO. We show a range of results comparing the two implementations. With these calculations and recent developments in the automatic generation of NLO matrix elements, it will be possible to obtain NLO precision with Herwig++ for a much wider range of processesComment: 26 pages, 28 figure

    Jet vetoing and Herwig++

    Full text link
    We investigate the simulation of events with gaps between jets with a veto on additional radiation in the gap in Herwig++. We discover that the currently-used random treatment of radiation in the parton shower is generating some unphysical behaviour for wide-angle gluon emission in QCD 2 to 2 scatterings. We explore this behaviour quantitatively by making the same assumptions as the parton shower in the analytical calculation. We then modify the parton shower algorithm in order to correct the simulation of QCD radiation.Comment: 18 pages, 11 figure

    Probing the low transverse momentum domain of Z production with novel variables

    Full text link
    The measurement of the low transverse momentum region of vector boson production in Drell-Yan processes has long been invaluable to testing our knowledge of QCD dynamics both beyond fixed-order in perturbation theory as well as in the non-perturbative region. Recently the D\O\ collaboration have introduced novel variables which lead to improved measurements compared to the case of the standard QT variable. To complement this improvement on the experimental side, we develop here a complete phenomenological study dedicated in particular to the new \phi* variable. We compare our study, which contains the state-of-the-art next-to-next-to-leading resummation of large logarithms and a smooth matching to the full next-to-leading order result, to the experimental data and find excellent agreement over essentially the entire range of \phi*, even without direct inclusion of non-perturbative effects. We comment on our findings and on the potential for future studies to constrain non-perturbative behaviour.Comment: 20 pages, 7 figures. Version accepted for publication in JHEP. A figure with comparison to RESBOS has been adde

    A Poincare-Covariant Parton Cascade Model for Ultrarelativistic Heavy-Ion Reactions

    Get PDF
    We present a new cascade-type microscopic simulation of nucleus-nucleus collisions at RHIC energies. The basic elements are partons (quarks and gluons) moving in 8N-dimensional phase space according to Poincare-covariant dynamics. The parton-parton scattering cross sections used in the model are computed within perturbative QCD in the tree-level approximation. The Q^2 dependence of the structure functions is included by an implementation of the DGLAP mechanism suitable for a cascade, so that the number of partons is not static, but varies in space and time as the collision of two nuclei evolves. The resulting parton distributions are presented, and meaningful comparisons with experimental data are discussed.Comment: 30 pages. 11 figures. Submitted to Phys.Rev.

    Hard Interactions of Quarks and Gluons: a Primer for LHC Physics

    Get PDF
    In this review article, we develop the perturbative framework for the calculation of hard scattering processes. We undertake to provide both a reasonably rigorous development of the formalism of hard scattering of quarks and gluons as well as an intuitive understanding of the physics behind the scattering. We emphasize the importance of logarithmic corrections as well as power counting of the strong coupling constant in order to understand the behavior of hard scattering processes. We include "rules of thumb" as well as "official recommendations", and where possible seek to dispel some myths. Experiences that have been gained at the Fermilab Tevatron are recounted and, where appropriate, extrapolated to the LHC.Comment: 118 pages, 107 figures; to be published in Reports on Progress in Physic

    Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report

    Full text link
    This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200 page

    Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC

    Full text link
    Precision studies of the production of a high-transverse momentum lepton in association with missing energy at hadron colliders require that electroweak and QCD higher-order contributions are simultaneously taken into account in theoretical predictions and data analysis. Here we present a detailed phenomenological study of the impact of electroweak and strong contributions, as well as of their combination, to all the observables relevant for the various facets of the p\smartpap \to {\rm lepton} + X physics programme at hadron colliders, including luminosity monitoring and Parton Distribution Functions constraint, WW precision physics and search for new physics signals. We provide a theoretical recipe to carefully combine electroweak and strong corrections, that are mandatory in view of the challenging experimental accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC, and discuss the uncertainty inherent the combination. We conclude that the theoretical accuracy of our calculation can be conservatively estimated to be about 2% for standard event selections at the Tevatron and the LHC, and about 5% in the very high WW transverse mass/lepton transverse momentum tails. We also provide arguments for a more aggressive error estimate (about 1% and 3%, respectively) and conclude that in order to attain a one per cent accuracy: 1) exact mixed O(ααs){\cal O}(\alpha \alpha_s) corrections should be computed in addition to the already available NNLO QCD contributions and two-loop electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be coherently included into a single event generator.Comment: One reference added. Final version to appear in JHE
    corecore