350 research outputs found
Accumulation of electric-field-stabilized geminate polaron pairs in an organic semiconductor to attain high excitation density under low intensity pumping
The recombination dynamics of geminate polaron pair (PP) states are investigated by monitoring electric-field-induced delayed fluorescence in thin films consisting of the green laser dye, Coumarin-6 (C6) doped at 1 wt %1wt% into 4,4′4,4′-bis(NN-carbazolyl)biphenyl. We find that the PP decay follows τ−mτ−m (with m ∼ 0.1m∼0.1), where ττ is the time that the PPs are held in the field. This sublinear decay suggests the possibility for accumulation of PPs over time that can then be reconverted into excitons upon field removal. We demonstrate the generation of short ( ∼ 50 ns∼50ns full width at half maximum) bursts of C6 fluorescence with peak intensities >20>20 times the steady-state fluorescence intensity (corresponding to a C6 singlet exciton density NS>4×1015 cm3NS>4×1015cm3) when pumped continuously by a low intensity (<1 W/cm2(<1W∕cm2) laser in the presence of a pulsed electric field.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87790/2/193502_1.pd
Microscopic approach to pion-nucleus dynamics
Elastic scattering of pions from finite nuclei is investigated utilizing a
contemporary, momentum--space first--order optical potential combined with
microscopic estimates of second--order corrections. The calculation of the
first--order potential includes:\ \ (1)~full Fermi--averaging integration
including both the delta propagation and the intrinsic nonlocalities in the
- amplitude, (2)~fully covariant kinematics, (3)~use of invariant
amplitudes which do not contain kinematic singularities, and (4)~a
finite--range off--shell pion--nucleon model which contains the nucleon pole
term. The effect of the delta--nucleus interaction is included via the mean
spectral--energy approximation. It is demonstrated that this produces a
convergent perturbation theory in which the Pauli corrections (here treated as
a second--order term) cancel remarkably against the pion true absorption terms.
Parameter--free results, including the delta--nucleus shell--model potential,
Pauli corrections, pion true absorption, and short--range correlations are
presented. (2 figures available from authors)Comment: 13 page
47.4: Blue Phosphorescent Organic Light Emitting Device Stability Analysis
A model based on defect generation by exciton‐polaron annihilation interactions between the emitter and host molecules, in a blue phosphorescent OLED, is shown to fit well with experimental data. A blue PHOLED with (0.15, 0.25) chromaticity is shown to have a half‐life, from 1,000 nits, of 690 hrs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92134/1/1.3069766.pd
Extracting accurate light-matter couplings from disordered polaritons
The vacuum Rabi splitting (VRS) in molecular polaritons stands as a
fundamental measure of collective light-matter coupling. Despite its
significance, the impact of molecular disorder on VRS is not fully understood
yet. This study delves into the complexities of VRS amidst various
distributions and degrees of disorder. Our analysis provides precise analytical
expressions for linear absorption, transmission, and reflection spectra, along
with a "sum" rule, offering a straightforward protocol for extracting accurate
collective light-matter coupling values from experimental data. Importantly,
our study cautions against directly translating large VRS to the onset of
ultrastrong coupling regime. Furthermore, for rectangular disorder, we witness
the emergence of narrow side bands alongside a broad central peak, indicating
an extended coherence lifetime even in the presence of substantial disorder.
These findings not only enhance our understanding of VRS in disordered
molecular systems but also open avenues for achieving prolonged coherence
lifetimes between the cavity and molecules via the interplay of collective
coupling and disorder
Frequency-dependent photoreactivity in disordered molecular polaritons
We present a powerful formalism (d-CUT-E) to simulate the ultrafast quantum
dynamics of molecular polaritons in the collective strong coupling regime,
where a disordered ensemble of molecules couples to a cavity mode.
Notably, we can capture this dynamics with a cavity hosting a single
molecule with electronic states, where
is the number of bins discretizing the disorder distribution.
Using d-CUT-E, we show that in highly disordered ensembles, total reaction
yield upon broadband excitation converges to that outside of the cavity. Yet,
strong coupling can bestow different reactivities upon individual molecules,
leading to changes in reaction yield upon narrowband excitation. Crucially,
this effect goes beyond changes in linear absorption due to optical filtering
through polaritons.Comment: 13 pages, 12 figure
Data reduction pipeline for MOF-based synoptic telescopes
There are strong scientific cases and practical reasons for building ground-based solar synoptic telescopes. Some issues, like the study of solar dynamics and the forecasting of solar flares, benefit from the 3D reconstruction of the Sun's atmosphere and magnetic field. Others, like the monitoring and prediction of space weather, require full disk observations, at the proper sampling rate, combining H-alpha images and Doppler velocity and magnetic field. The synoptic telescopes based on Magneto Optical Filters (MOF) using different lines are capable of measuring the line-of-sight Doppler velocity and magnetic field over the full solar disk at different ranges of height in the Sun's photosphere and low chromosphere. Instruments like the MOTH (Magneto-Optical filters at Two Heights), using a dual-channel based on MOFs operating at 589.0 nm (Na D2 line) and 769.9 nm (K D1 line), the VAMOS instrument (Velocity And Magnetic Observations of the Sun), operating at 769.9 nm (K D1 line), and the future TSST (Tor Vergata Synoptic Solar Telescope), using a dual-channel telescope operating at 656.28 nm (H-alpha line) and at 769.9 nm (K D1 line), allow to face both aspects, the scientific and the operative related to Space Weather applications. The MOTH, VAMOS and TSST data enable a wide variety of studies of the Sun, from seismic probing of the solar interior (sound speed, rotation, details of the tachocline, sub-surface structure of active regions), to the dynamics and magnetic evolution of the lower part of the solar atmosphere (heating of the solar atmosphere, identification of the signatures of solar eruptive events, atmospheric gravity waves, etc.), to the 3D reconstruction of the solar atmosphere and flare locations. However, the use of MOF filters requires special care in calibrating the data for scientific or operational use. This work presents a systematic pipeline that derives from the decennial use of MOF's technology. More in detail, the pipeline is based on data reduction procedures tested and validated on MOTH data acquired at Mees Solar Observatory of the University of Hawaii Haleakala Observatories and at South Pole Solar Observatory (SPSO), at the Amundsen-Scott South Pole Station in Antarctica, during Antarctica Summer Campaign 2016/17
Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.
International audienceABSTRACT: The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology
- …
