180 research outputs found

    Basophil activation test: food challenge in a test tube or specialist research tool?

    Get PDF
    Oral food challenge (OFC) is the gold-standard to diagnose food allergy; however, it is a labour and resource-intensive procedure with the risk of causing an acute allergic reaction, which is potentially severe. Therefore, OFC are reserved for cases where the clinical history and the results of skin prick test and/or specific IgE do not confirm or exclude the diagnosis of food allergy. This is a significant proportion of patients seen in Allergy clinics and results in a high demand for OFC. The basophil activation test (BAT) has emerged as a new diagnostic test for food allergy. With high diagnostic accuracy, it can be particularly helpful in the cases where skin prick test and specific IgE are equivocal and may allow reducing the need for OFC. BAT has high specificity, which confers a high degree of certainty in confirming the diagnosis of food allergy and allows deferring the performance of OFC in patients with a positive BAT. The diagnostic utility of BAT is allergen-specific and needs to be validated for different allergens and in specific patient populations. Standardisation of the laboratory methodology and of the data analyses would help to enable a wider clinical application of BAT

    IgG4 inhibits peanut-induced basophil and mast cell activation in peanut-tolerant children sensitized to peanut major allergens

    Get PDF
    BackgroundMost children with detectable peanut-specific IgE (P-sIgE) are not allergic to peanut. We addressed 2 non–mutually exclusive hypotheses for the discrepancy between allergy and sensitization: (1) differences in P-sIgE levels between children with peanut allergy (PA) and peanut-sensitized but tolerant (PS) children and (2) the presence of an IgE inhibitor, such as peanut-specific IgG4 (P-sIgG4), in PS patients.MethodsTwo hundred twenty-eight children (108 patients with PA, 77 PS patients, and 43 nonsensitized nonallergic subjects) were studied. Levels of specific IgE and IgG4 to peanut and its components were determined. IgE-stripped basophils or a mast cell line were used in passive sensitization activation and inhibition assays. Plasma of PS subjects and patients submitted to peanut oral immunotherapy (POIT) were depleted of IgG4 and retested in inhibition assays.ResultsBasophils and mast cells sensitized with plasma from patients with PA but not PS patients showed dose-dependent activation in response to peanut. Levels of sIgE to peanut and its components could only partially explain differences in clinical reactivity between patients with PA and PS patients. P-sIgG4 levels (P = .023) and P-sIgG4/P-sIgE (P < .001), Ara h 1–sIgG4/Ara h 1–sIgE (P = .050), Ara h 2–sIgG4/Ara h 2–sIgE (P = .004), and Ara h 3–sIgG4/Ara h 3–sIgE (P = .016) ratios were greater in PS children compared with those in children with PA. Peanut-induced activation was inhibited in the presence of plasma from PS children with detectable P-sIgG4 levels and POIT but not from nonsensitized nonallergic children. Depletion of IgG4 from plasma of children with PS (and POIT) sensitized to Ara h 1 to Ara h 3 partially restored peanut-induced mast cell activation (P = .007).ConclusionsDifferences in sIgE levels and allergen specificity could not justify the clinical phenotype in all children with PA and PS children. Blocking IgG4 antibodies provide an additional explanation for the absence of clinical reactivity in PS patients sensitized to major peanut allergens

    Biomarkers of severity and threshold of allergic reactions during oral peanut challenges

    Get PDF
    Background: oral food challenge (OFC) is the criterion standard to assess peanut allergy (PA), but it involves a risk of allergic reactions of unpredictable severity.Objective: our aim was to identify biomarkers for risk of severe reactions or low dose threshold during OFC to peanut.Methods: we assessed Learning Early about Peanut Allergy study, Persistance of Oral Tolerance to Peanut study, and Peanut Allergy Sensitization study participants by administering the basophil activation test (BAT) and the skin prick test (SPT) and measuring the levels of peanut-specific IgE, Arachis hypogaea 2–specific IgE, and peanut-specific IgG4, and we analyzed the utility of the different biomarkers in relation to PA status, severity, and threshold dose of allergic reactions to peanut during OFC.Results: when a previously defined optimal cutoff was used, the BAT diagnosed PA with 98% specificity and 75% sensitivity. The BAT identified severe reactions with 97% specificity and 100% sensitivity. The SPT, level of Arachis hypogaea 2–specific IgE, level of peanut-specific IgE, and IgG4/IgE ratio also had 100% sensitivity but slightly lower specificity (92%, 93%, 90%, and 88%, respectively) to predict severity. Participants with lower thresholds of reactivity had higher basophil activation to peanut in vitro. The SPT and the BAT were the best individual predictors of threshold. Multivariate models were superior to individual biomarkers and were used to generate nomograms to calculate the probability of serious adverse events during OFC for individual patients.Conclusions: the BAT diagnosed PA with high specificity and identified severe reactors and low threshold with high specificity and high sensitivity. The BAT was the best biomarker for severity, surpassed only by the SPT in predicting threshold. Nomograms can help estimate the likelihood of severe reactions and reactions to a low dose of allergen in individual patients with PA

    IgE to epitopes of Ara h 2 enhance the diagnostic accuracy of Ara h 2‐specific IgE

    Get PDF
    © 2020 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Background: Understanding the discrepancy between IgE sensitization and allergic reactions to peanut could facilitate diagnosis and lead to novel means of treating peanut allergy. Objective: To identify differences in IgE and IgG4 binding to peanut peptides between peanut-allergic (PA) and peanut-sensitized but tolerant (PS) children. Methods: PA (n = 56), PS (n = 42) and nonsensitized nonallergic (NA, n = 10) patients were studied. Synthetic overlapping 15-mer peptides of peanut allergens (Ara h 1-11) were spotted onto microarray slides, and patients' samples were tested for IgE and IgG4 binding using immunofluorescence. IgE and IgG4 levels to selected peptides were quantified using ImmunoCAP. Diagnostic model comparisons were performed using likelihood-ratio tests between each specified nominal logistic regression models. Results: Seven peptides on Ara h 1, Ara h 2, and Ara h 3 were bound more by IgE of PA compared to PS patients on the microarray. IgE binding to one peptide on Ara h 5 and IgG4 binding to one Ara h 9 peptide were greater in PS than in PA patients. Using ImmunoCAP, IgE to the Ara h 2 peptides enhanced the diagnostic accuracy of Ara h 2-specific IgE. Ratios of IgG4/IgE to 4 out of the 7 peptides were higher in PS than in PA subjects. Conclusions: Ara h 2 peptide-specific IgE added diagnostic value to Ara h 2-specific IgE. Ability of peptide-specific IgG4 to surmount their IgE counterpart seems to be important in established peanut tolerance.This work was supported by the Medical Research Council (MRC Clinical Research Training Fellowship G090218, MRC Centenary Early Career Award and MRC Clinician Scientist Fellowship MR/M008517/1, all awarded to A. F. Santos), the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust; the US Department of Agriculture, Agricultural Research Service (USDA-ARS6054-43440-046-00D; USDA-NIFA) and the National Peanut Board (GRANT12229460).info:eu-repo/semantics/publishedVersio

    Factors affecting the determination of threshold doses for allergenic foods: How much is too much?

    Get PDF
    Background: Ingestion of small amounts of an offending food can elicit adverse reactions in individuals with IgE-mediated food allergies. The threshold dose for provocation of such reactions is often considered to be zero. However, because of various practical limitations in food production and processing, foods may occasionally contain trace residues of the offending food. Are these very low, residual quantities hazardous to allergic consumers? How much of the offending food is too much? Very little quantitative information exists to allow any risk assessments to be conducted by the food industry. Objective: We sought to determine whether the quality and quantity of existing clinical data on threshold doses for commonly allergenic foods were sufficient to allow consensus to be reached on establishment of threshold doses for specific foods. Methods: In September 1999,12 clinical allergists and other interested parties were invited to participate in a roundtable conference to share existing data on threshold doses and to discuss clinical approaches that would allow the acquisition of that information. Results: Considerable data were identified in clinical files relating to the threshold doses for peanut, cows\u27 milk, and egg; limited data were available for other foods, such as fish and mustard. Conclusions: Because these data were often obtained by means of different protocols, the estimation of a threshold dose was very difficult. Development of a standardized protocol for clinical experiments to allow determination of the threshold dose is needed

    The global impact of the DRACMA guidelines cow’s milk allergy clinical practice

    Get PDF
    Background: The 2010 Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) guidelines are the only Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines for cow’s milk allergy (CMA). They indicate oral food challenge (OFC) as the reference test for diagnosis, and suggest the choice of specific alternative formula in different clinical conditions. Their recommendations are flexible, both in diagnosis and in treatment. Objectives & methods: Using the Scopus citation records, we evaluated the influence of the DRACMA guidelines on milk allergy literature. We also reviewed their impact on successive food allergy and CMA guidelines at national and international level. We describe some economic consequences of their application. Results: DRACMA are the most cited CMA guidelines, and the second cited guidelines on food allergy. Many subsequent guidelines took stock of DRACMA’s metanalyses adapting recommendations to the local context. Some of these chose not to consider OFC as an absolute requirement for the diagnosis of CMA. Studies on their implementation show that in this case, the treatment costs may increase and there is a risk of overdiagnosis. Interestingly, we observed a reduction in the cost of alternative formulas following the publication of the DRACMA guidelines. Conclusions: DRACMA reconciled international differences in the diagnosis and management of CMA. They promoted a cultural debate, improved clinician’s knowledge of CMA, improved the quality of diagnosis and care, reduced inappropriate practices, fostered the efficient use of resources, empowered patients, and influenced some public policies. The accruing evidence on diagnosis and treatment of CMA necessitates their update in the near futur
    corecore