2,858 research outputs found

    Predicting Pilot Success Using Machine Learning

    Get PDF
    The United States Air Force has a pilot shortage. Unfortunately, training an Air Force pilot requires significant time and resources. Thus, diligence and expediency are critical in selecting those pilot candidates with a strong possibility of success. This research applies multivariate and statistical machine learning techniques to pilot candidates pre-qualification test data and undergraduate pilot training results to determine whether there are selected pre-qualification tests or specific training evaluations that do a \best job of screening for successful pilot training candidates and distinguished graduates. Flight experience, both during training and otherwise, indicates pilot training completion and performance

    Quantum Black Holes

    Full text link
    Static solutions of large-NN quantum dilaton gravity in 1+11+1 dimensions are analyzed and found to exhibit some unusual behavior. As expected from previous work, infinite-mass solutions are found describing a black hole in equilibrium with a bath of Hawking radiation. Surprisingly, the finite mass solutions are found to approach zero coupling both at the horizon and spatial infinity, with a ``bounce'' off of strong coupling in between. Several new zero mass solutions -- candidate quantum vacua -- are also described.Comment: 14 pages + 6 figure

    The screwworm eradication data system archives

    Get PDF
    The archives accumulated during 1 year of operation of the Satellite Temperature-Monitoring System during development of the Screwworm Eradication Data System are reported. Brief descriptions of all the kinds of tapes, as well as their potential uses, are presented. Reference is made to other documents that explain the generation of these data

    High energy QCD scattering, the shape of gravity on an IR brane, and the Froissart bound

    Get PDF
    High-energy scattering in non-conformal gauge theories is investigated using the AdS/CFT dual string/gravity theory. It is argued that strong-gravity processes, such as black hole formation, play an important role in the dual dynamics. Further information about this dynamics is found by performing a linearized analysis of gravity for a mass near an infrared brane; this gives the far field approximation to black hole or other strong-gravity effects, and in particular allows us to estimate their shape. From this shape, one can infer a total scattering cross-section that grows with center of mass energy as ln^2 E, saturating the Froissart bound.Comment: 27 pages, 1 fig, harvmac. v2: references added, typos corrected v3: typo correcte

    Quantization in black hole backgrounds

    Get PDF
    Quantum field theory in a semiclassical background can be derived as an approximation to quantum gravity from a weak-coupling expansion in the inverse Planck mass. Such an expansion is studied for evolution on "nice-slices" in the spacetime describing a black hole of mass M. Arguments for a breakdown of this expansion are presented, due to significant gravitational coupling between fluctuations, which is consistent with the statement that existing calculations of information loss in black holes are not reliable. For a given fluctuation, the coupling to subsequent fluctuations becomes of order unity by a time of order M^3. Lack of a systematic derivation of the weakly-coupled/semiclassical approximation would indicate a role for the non-perturbative dynamics of gravity, and possibly for the proposal that such dynamics has an essentially non-local quality.Comment: 28 pages, 4 figures, harvmac. v2: added refs, minor clarification

    Field Theory as Free Fall

    Get PDF
    It is shown that the classical field equations pertaining to gravity coupled to other bosonic fields are equivalent to a single geodesic equation, describing the free fall of a point particle in superspace. Some implications for quantum gravity are discussed.Comment: 18 pages, plain late

    UV-Completion by Classicalization

    Full text link
    We suggest a novel approach to UV-completion of a class of non-renormalizable theories, according to which the high-energy scattering amplitudes get unitarized by production of extended classical objects (classicalons), playing a role analogous to black holes, in the case of non-gravitational theories. The key property of classicalization is the existence of a classicalizer field that couples to energy-momentum sources. Such localized sources are excited in high-energy scattering processes and lead to the formation of classicalons. Two kinds of natural classicalizers are Nambu-Goldstone bosons (or, equivalently, longitudinal polarizations of massive gauge fields) and scalars coupled to energy-momentum type sources. Classicalization has interesting phenomenological applications for the UV-completion of the Standard Model both with or without the Higgs. In the Higgless Standard Model the high-energy scattering amplitudes of longitudinal WW-bosons self-unitarize via classicalization, without the help of any new weakly-coupled physics. Alternatively, in the presence of a Higgs boson, classicalization could explain the stabilization of the hierarchy. In both scenarios the high-energy scatterings are dominated by the formation of classicalons, which subsequently decay into many particle states. The experimental signatures at the LHC are quite distinctive, with sharp differences in the two cases.Comment: 37 page

    Comments on information loss and remnants

    Full text link
    The information loss and remnant proposals for resolving the black hole information paradox are reconsidered. It is argued that in typical cases information loss implies energy loss, and thus can be thought of in terms of coupling to a spectrum of ``fictitious'' remnants. This suggests proposals for information loss that do not imply planckian energy fluctuations in the low energy world. However, if consistency of gravity prevents energy non-conservation, these remnants must then be considered to be real. In either case, the catastrophe corresponding to infinite pair production remains a potential problem. Using Reissner-Nordstrom black holes as a paradigm for a theory of remnants, it is argued that couplings in such a theory may give finite production despite an infinite spectrum. Evidence for this is found in analyzing the instanton for Schwinger production; fluctuations from the infinite number of states lead to a divergent stress tensor, spoiling the instanton calculation. Therefore naive arguements for infinite production fail.Comment: 30 pages (harvmac l mode) UCSBTH-93-35 (minor reference and typo corrections
    corecore