72 research outputs found

    Upper limb disease evolution in exon 53 skipping eligible patients with Duchenne muscular dystrophy

    Get PDF
    Objective: To understand the natural disease upper limb progression over 3 years of ambulatory and non-ambulatory patients with Duchenne muscular dystrophy (DMD) using functional assessments and quantitative magnetic resonance imaging (MRI) and to exploratively identify prognostic factors. Methods: Forty boys with DMD (22 non-ambulatory and 18 ambulatory) with deletions in dystrophin that make them eligible for exon 53-skipping therapy were included. Clinical assessments, including Brooke score, motor function measure (MFM), hand grip and key pinch strength, and upper limb distal coordination and endurance (MoviPlate), were performed every 6 months and quantitative MRI of fat fraction (FF) and lean muscle cross sectional area (flexor and extensor muscles) were performed yearly. Results: In the whole population, there were strong nonlinear correlations between outcome measures. In non-ambulatory patients, annual changes over the course of 3 years were detected with high sensitivity standard response mean (|SRM| ≄0.8) for quantitative MRI-based FF, hand grip and key pinch, and MFM. Boys who presented with a FF27% were able to bring a glass to their mouth and retained this ability in the following 3 years. Ambulatory patients with grip strength >35% of predicted value and FF <10% retained ambulation 3 years later. Interpretation: We demonstrate that continuous decline in upper limb strength, function, and MRI measured muscle structure can be reliably measured in ambulatory and non-ambulatory boys with DMD with high SRM and strong correlations between outcomes. Our results suggest that a combination of grip strength and FF can be used to predict important motor milestones

    Rimeporide as a ïŹrst- in-class NHE-1 inhibitor: Results of a phase Ib trial in young patients with Duchenne Muscular Dystrophy

    Get PDF
    Rimeporide, a ïŹrst-in-class sodium/proton exchanger Type 1 inhibitor (NHE-1 inhibitor) is repositioned by EspeRare for patients with Duchenne Muscular Dystrophy (DMD). Historically, NHE-1 inhibitors were developed for cardiac therapeutic interventions. There is considerable overlap in the pathophysiological mechanisms in Congestive Heart Failure (CHF) and in cardiomyopathy in DMD, therefore NHE-1 inhibition could be a promising pharmacological approach to the cardiac dysfunctions observed in DMD. Extensive preclinical data was collected in various animal models including dystrophin-deficient (mdx) mice to characterise Rimeporide’s anti-fibrotic and anti-inflammatory properties and there is evidence that NHE-1 inhibitors could play a significant role in modifying DMD cardiac and also skeletal pathologies, as the NHE-1 isoform is ubiquitous. We report here the first study with Rimeporide in DMD patients. This 4-week treatment, open label phase Ib, multiple oral ascending dose study, enrolled 20 ambulant boys with DMD (6–11 years), with outcomes including safety, pharmacokinetic (PK) and pharmacodynamic (PD) biomarkers. Rimeporide was safe and well-tolerated at all doses. PK evaluations showed that Rimeporide was well absorbed orally reaching pharmacological concentrations from the lowest dose, with exposure increasing linearly with dose and with no evidence of accumulation upon repeated dosing. Exploratory PD biomarkers showed positive effect upon a 4-week treatment, supporting its therapeutic potential in patients with DMD, primarily as a cardioprotective treatment, and provide rationale for further efficacy studies

    Ataluren delays loss of ambulation and respiratory decline in nonsense mutation Duchenne muscular dystrophy patients

    Get PDF
    Aim: We investigated the effect of ataluren plus standard of care (SoC) on age at loss of ambulation (LoA) and respiratory decline in patients with nonsense mutation Duchenne muscular dystrophy (nmDMD) versus patients with DMD on SoC alone. / Patients & methods: Study 019 was a long-term Phase III study of ataluren safety in nmDMD patients with a history of ataluren exposure. Propensity score matching identified Study 019 and CINRG DNHS patients similar in disease progression predictors. / Results & conclusion: Ataluren plus SoC was associated with a 2.2-year delay in age at LoA (p = 0.0006), and a 3.0-year delay in decline of predicted forced vital capacity to <60% in nonambulatory patients (p = 0.0004), versus SoC. Ataluren plus SoC delays disease progression and benefits ambulatory and nonambulatory patients with nmDMD. / ClinicalTrials.gov: NCT01557400

    Characterization of pulmonary function in 10Ăą18 year old patients with Duchenne muscular dystrophy

    Get PDF
    Pulmonary function loss in patients with Duchenne muscular dystrophy (DMD) is progressive and leads to pulmonary insufficiency. The purpose of this study in 10Ăą18 year old patients with DMD is the assessment of the inter-correlation between pulmonary function tests (PFTs), their reliability and the association with the general disease stage measured by the Brooke score. Dynamic PFTs (peak expiratory flow [PEF], forced vital capacity [FVC], forced expiratory volume in one second [FEV1]) and maximum static airway pressures (MIP, MEP) were prospectively collected from 64 DMD patients enrolled in the DELOS trial (ClinicalTrials.gov, number NCT01027884). Baseline PEF percent predicted (PEF%p) was <80% and patients had stopped taking glucocorticoids at least 12 months prior to study start. At baseline PEF%p, FVC%p and FEV1%p correlated well with each other (Spearman's rho: PEF%pĂąFVC%p: 0.54; PEF%pĂąFEV1%p: 0.72; FVC%pĂąFEV1%p: 0.91). MIP%p and MEP%p correlated well with one another (MIP%pĂąMEP%p: 0.71) but less well with PEF%p (MIP%pĂąPEF%p: 0.40; MEP%pĂąPEF%p: 0.41) and slightly better with FVC%p (MIP%pĂąFVC%p: 0.59; MEP%pĂąFVC%p: 0.74). The within-subject coefficients of variation (CV) for successive measures were 6.97% for PEF%p, 6.69% for FVC%p and 11.11% for FEV1%p, indicating that these parameters could be more reliably assessed compared to maximum static airway pressures (CV for MIP%p: 18.00%; MEP%p: 15.73%). Yearly rates of PFT decline (placebo group) were larger in dynamic parameters (PEF%p: Ăą8.9% [SD 2.0]; FVC%p: Ăą8.7% [SD 1.1]; FEV1%p: Ăą10.2% [SD 2.0]) than static airway pressures (MIP%p: Ăą4.5 [SD 1.3]; MEP%p: Ăą2.8 [SD 1.1]). A considerable drop in dynamic pulmonary function parameters was associated with loss of upper limb function (transition from Brooke score category 4 to category 5). In conclusion, these findings expand the understanding of the reliability, correlation and evolution of different pulmonary function measures in DMD patients who are in the pulmonary function decline phase

    Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing

    Get PDF
    A short abnormal polyalanine expansion in the polyadenylate-binding protein nuclear-1 (PABPN1) protein causes oculopharyngeal muscular dystrophy (OPMD). Mutated PABPN1 proteins accumulate as insoluble intranuclear aggregates in muscles of OPMD patients. While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice have been established, the molecular mechanisms which trigger pathological defects in OPMD and the role of aggregates remain to be determined. Using exon array, for the first time we have identified several splicing defects in OPMD. In particular, we have demonstrated a defect in the splicing regulation of the muscle-specific Troponin T₃ (TNNT₃) mutually exclusive exons 16 and 17 in OPMD samples compared to controls. This splicing defect is directly linked to the SC₃₅ (SRSF2) splicing factor and to the presence of nuclear aggregates. As reported here, PABPN1 aggregates are able to trap TNNT₃ pre-mRNA, driving it outside nuclear speckles, leading to an altered SC₃₅ -mediated splicing. This results in a decreased calcium sensitivity of muscle fibers, which could in turn plays a role in muscle pathology. We thus report a novel mechanism of alternative splicing deregulation that may play a role in various other diseases with nuclear inclusions or foci containing an RNA binding protein

    Idebenone reduces respiratory complications in patients with Duchenne muscular dystrophy

    Get PDF
    In Duchenne muscular dystrophy (DMD), progressive loss of respiratory function leads to restrictive pulmonary disease and places patients at significant risk for severe respiratory complications. Of particular concern are ineffective cough, secretion retention and recurrent respiratory tract infections. In a Phase 3 randomized controlled study (DMD Long-term Idebenone Study, DELOS) in DMD patients 10–18 years of age and not taking concomitant glucocorticoid steroids, idebenone (900 mg/day) reduced significantly the loss of respiratory function over a 1-year study period. In a post-hoc analysis of DELOS we found that more patients in the placebo group compared to the idebenone group experienced bronchopulmonary adverse events (BAEs): placebo: 17 of 33 patients, 28 events; idebenone: 6 of 31 patients, 7 events. The hazard ratios (HR) calculated “by patient” (HR 0.33, p = 0.0187) and for “all BAEs” (HR 0.28, p = 0.0026) indicated a clear idebenone treatment effect. The overall duration of BAEs was 222 days (placebo) vs. 82 days (idebenone). In addition, there was also a difference in the use of systemic antibiotics utilized for the treatment of BAEs. In the placebo group, 13 patients (39.4%) reported 17 episodes of antibiotic use compared to 7 patients (22.6%) reporting 8 episodes of antibiotic use in the idebenone group. Furthermore, patients in the placebo group used systemic antibiotics for longer (105 days) compared to patients in the idebenone group (65 days). This post-hoc analysis of DELOS indicates that the protective effect of idebenone on respiratory function is associated with a reduced risk of bronchopulmonary complications and a reduced need for systemic antibiotics

    Specific immunotherapy by the sublingual route for respiratory allergy

    Get PDF
    Specific immunotherapy is the only treatment able to act on the causes and not only on the symptoms of respiratory allergy. Sublingual immunotherapy (SLIT) was introduced as an option to subcutaneous immunotherapy (SCIT), the clinical effectiveness of which is partly counterbalanced by the issue of adverse systemic reactions, which occur at a frequency of about 0.2% of injections and 2-5% of the patients and may also be life-threatening. A large number of trials, globally evaluated by several meta-analyses, demonstrated that SLIT is an effective and safe treatment for allergic rhinitis and allergic asthma, severe reactions being extremely rare. The application of SLIT is favored by a good compliance, higher than that reported for SCIT, in which the injections are a major factor for noncompliance because of inconvenience, and by its cost-effectiveness. In fact, a number of studies showed that SLIT may be very beneficial to the healthcare system, especially when its effectiveness persists after treatment withdrawal because of the induced immunologic changes

    The delivery of personalised, precision medicines via synthetic proteins

    Get PDF
    Introduction: The design of advanced drug delivery systems based on synthetic and su-pramolecular chemistry has been very successful. Liposomal doxorubicin (CaelyxÂź), and liposomal daunorubicin (DaunoXomeÂź), estradiol topical emulsion (EstrasorbTM) as well as soluble or erodible polymer systems such as pegaspargase (OncasparÂź) or goserelin acetate (ZoladexÂź) represent considerable achievements. The Problem: As deliverables have evolved from low molecular weight drugs to biologics (currently representing approximately 30% of the market), so too have the demands made of advanced drug delivery technology. In parallel, the field of membrane trafficking (and endocytosis) has also matured. The trafficking of specific receptors i.e. material to be recycled or destroyed, as well as the trafficking of protein toxins has been well characterized. This, in conjunction with an ability to engineer synthetic, recombinant proteins provides several possibilities. The Solution: The first is using recombinant proteins as drugs i.e. denileukin diftitox (OntakÂź) or agalsidase beta (FabrazymeÂź). The second is the opportunity to use protein toxin architecture to reach targets that are not normally accessible. This may be achieved by grafting regulatory domains from multiple species to form synthetic proteins, engineered to do multiple jobs. Examples include access to the nucleocytosolic compartment. Herein the use of synthetic proteins for drug delivery has been reviewed

    PABPN1 gene therapy for oculopharyngeal muscular dystrophy

    Get PDF
    International audienceOculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant, late-onset muscle disorder characterized by ptosis, swallowing difficulties, proximal limb weakness and nuclear aggregates in skeletal muscles. OPMD is caused by a trinucleotide repeat expansion in the PABPN1 gene that results in an N-terminal expanded polyalanine tract in polyA-binding protein nuclear 1 (PABPN1). Here we show that the treatment of a mouse model of OPMD with an adeno-associated virus-based gene therapy combining complete knockdown of endogenous PABPN1 and its replacement by a wild-type PABPN1 substantially reduces the amount of insoluble aggregates, decreases muscle fibrosis, reverts muscle strength to the level of healthy muscles and normalizes the muscle transcriptome. The efficacy of the combined treatment is further confirmed in cells derived from OPMD patients. These results pave the way towards a gene replacement approach for OPMD treatment

    Nusinersen treatment of spinal muscular atrophy: current knowledge and existing gaps

    No full text
    Spinal muscular atrophy (SMA) is a recessive disorder caused by a mutation in the survival motor neuron 1 gene (SMN1); it affects 1 in 11 000 newborn infants. The most severe and most common form, type 1 SMA, is associated with early mortality in most cases and severe disability in survivors. Nusinersen, an antisense oligonucleotide, promotes production of full-length protein from the pseudogene SMN2. Nusinersen treatment prolongs survival of patients with type 1 SMA and allows motor milestone acquisition. Patients with type 2 SMA also show progress on different motor scales after nusinersen treatment. Nusinersen was recently approved by the European Medicines Agency and the US Food and Drug Administration; it is now reimbursed in several European countries and in the USA. In Australia, the transition from expanded access programme to commercial availability is coming soon. In New Zealand, an expanded access programme is opened, and in Canada price negotiation for the treatment is in progress. In this review we exemplify the clinical benefit of nusinersen in subgroups of patients with SMA. Nusinersen represents the first efficacious marked approved drug in type 1 and type 2 SMA. Different knowledge gaps, such as results in older patients, in patients with permanent ventilation, in patients with neonatal forms, or in patients after spinal fusion, still need to be addressed. WHAT THIS PAPER ADDS: Identifies gaps in knowledge about the efficacy of nusinersen in broader populations of patients with spinal muscular atrophy. Identifies open questions in populations of patients where proof of efficacy is available
    • 

    corecore