21,186 research outputs found

    Gravitational hydrodynamics of large scale structure formation

    Get PDF
    The gravitational hydrodynamics of the primordial plasma with neutrino hot dark matter is considered as a challenge to the bottom-up cold dark matter paradigm. Viscosity and turbulence induce a top-down fragmentation scenario before and at decoupling. The first step is the creation of voids in the plasma, which expand to 37 Mpc on the average now. The remaining matter clumps turn into galaxy clusters. Turbulence produced at expanding void boundaries causes a linear morphology of 3 kpc fragmenting protogalaxies along vortex lines. At decoupling galaxies and proto-globular star clusters arise; the latter constitute the galactic dark matter halos and consist themselves of earth-mass H-He planets. Frozen planets are observed in microlensing and white-dwarf-heated ones in planetary nebulae. The approach also explains the Tully-Fisher and Faber-Jackson relations, and cosmic microwave temperature fluctuations of micro-Kelvins.Comment: 6 pages, no figure

    Lunar resources: Oxygen from rocks and soil

    Get PDF
    The first set of hydrogen reduction experiments to use actual lunar material was recently completed. The sample, 70035, is a coarse-grained vesicular basalt containing 18.46 wt. percent FeO and 12.97 wt. percent TiO2. The mineralogy includes pyroxene, ilmenite, plagioclase, and minor olivine. The sample was crushed to a grain size of less than 500 microns. The crushed basalt was reduced with hydrogen in seven tests at temperatures of 900-1050 C and pressures of 1-10 atm for 30-60 minutes. A capacitance probe, measuring the dew point of the gas stream, was used to follow reaction progress. Experiments were also conducted using a terrestrial basalt similar to some lunar mare samples. Minnesota Lunar Simulant (MLS-1) contains 13.29 wt. percent FeO, 2.96 wt. percent Fe2O3, and 6.56 wt. percent TiO2. The major minerals include plagioclase, pyroxene, olivine, ilmenite, and magnetite. The rock was ground and seived, and experiments were run on the less than 74- and 500-1168-micron fractions. Experiments were also conducted on less than 74-micron powders of olivine, pyroxene, synthetic ilmenite, and TiO2. The terrestrial rock and mineral samples were reduced with flowing hydrogen at 1100 C in a microbalance furnace, with reaction progress monitored by weight loss. Experiments were run at atmospheric pressure for durations of 3-4 hr. Solid samples from both sets of experiments were analyzed by Mossbauer spectroscopy, petrographic microscopy, scanning electron microscopy, tunneling electron microscopy, and x-ray diffraction. Apollo 17 soil 78221 was examined for evidence of natural reduction in the lunar environment. This sample was chosen based on its high maturity level (I sub s/FeO = 93.0). The FeO content is 11.68 wt. percent and the TiO2 content is 3.84 wt. percent. A polished thin section of the 90-150 micron size fraction was analyzed by petrographic microscopy and scanning electron microscopy

    Matrix Quantization of Turbulence

    Full text link
    Based on our recent work on Quantum Nambu Mechanics \cite{af2}, we provide an explicit quantization of the Lorenz chaotic attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. For the volume preserving part, they satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Matrix Lorenz system develop fast decoherence to N independent Lorenz attractors. On the other hand there is a weak dissipation regime, where the quantum mechanical properties of the volume preserving non-dissipative sector survive for long times.Comment: 14 pages, Based on invited talks delivered at: Fifth Aegean Summer School, "From Gravity to Thermal Gauge theories and the AdS/CFT Correspondance", September 2009, Milos, Greece; the Intern. Conference on Dynamics and Complexity, Thessaloniki, Greece, 12 July 2010; Workshop on "AdS4/CFT3 and the Holographic States of Matter", Galileo Galilei Institute, Firenze, Italy, 30 October 201

    On the Convergence of the Born Series in Optical Tomography with Diffuse Light

    Full text link
    We provide a simple sufficient condition for convergence of Born series in the forward problem of optical diffusion tomography. The condition does not depend on the shape or spatial extent of the inhomogeneity but only on its amplitude.Comment: 23 pages, 7 figures, submitted to Inverse Problem

    Genome of Alcanivorax sp. 24 : a hydrocarbon degrading bacterium isolated from marine plastic debris

    Get PDF
    Alcanivorax is an important member of the hydrocarbonoclastic group known for using alkanes and other related compound as their preferred carbon source. Here we report the genomic characteristics of Alcanivorax sp. 24 isolated from plastic marine debris. Its 4,765,873 bp genome, containing 4239 coding sequences, revealed the presence of all genomic features involved in alkane degradation (i.e. two cytochrome P450, three alkane monooxygenases AlkB and two enzymes involved in the degradation of long-chain alkanes AlmA) as well as other relevant enzymes that may play a role in the biodegradation of other polymers such as polyhydroxybutyrate. The genome features and phylogenetic context of these genes provide interesting insight into the lifestyle versatility of Alcanivorax sp. living in the plastisphere of marine plastic debris

    Residual strength of equine bone is not reduced by intense fatigue loading: Implications for stress fracture

    Get PDF
    Fatigue or stress fractures are an important clinical problem in humans as well as racehorses. An important question in this context is, when a bone experiences. fa!igue damage ~uring e~treme use, how much is it weakened compared to its original state? Since there are very ltmtted data on thts quesuon and stress fractures are common in racehorses, we sought to determine the effect of fatigue loading on the monotonic l:trength of equine cortical bone. Beams were machined from the dorsal, medial and lateral cortices of the third metacarpal bones of six thoroughbred racehorses. Beams from left and right bones were assigned to control and fatigue groups. respectively (N- 18 each). The fatigue group was cyclicully loaded in three-point bending at 2Hz for 100,000 cycles at 0- 5000 microstrain while submerged in saline at 37°C. These beams. as well as those in the control group. were then monotonically loaded to failure in three-point bending. The monotonic load-deflection curves were analyzed for differences using three-factor (fatigue loading, ~natotni~ region. and horse)_ analysis o_f variance .. The mean failure load was 3% less in the fatigue group, but thts reduction was only margmally stgmficant. Netther elastic modulus nor yield strength was significantly affected by the fatigue loading. The principal effects of fatigue loading were on post-yield behavior (yield being based on a 0.02% offset criter!on). The work don~ and the load increase between yield and failure were both significantly reduced. All the vanables except post-yteld deflecuon were significantly affected by anatomic region. In summary, loading equivalent to a lifetime of racing does not significantly weaken equine cortical bone ex vivo. The clinical implication of this may be that the biological repair of fatigue damage can actually contribute to stress fracture if pressed too far

    Elastic electron scattering from 3-hydroxytetrahydrofuran: experimental and theoretical studies

    Get PDF
    We report the results of measurements and calculations for elastic electron scattering from 3-hydroxytetrahydrofuran (C4H8O2). The measurements are performed with a crossed electron-target beam apparatus and the absolute cross-sections are determined using the relative flow technique. The calculations are carried out using the Schwinger multichannel method in the static-exchange plus polarization (SEP) approximation. A set of angular differential cross-sections (DCS) is provided at five incident energies (6.5, 8, 10, 15 and 20 eV) over an angular range of 20–130°, and the energy dependence of the elastic DCS at a scattering angle of 120° is also presented. Integral elastic and elastic momentum transfer cross-sections have also been derived and calculated. The results are compared with those of recent measurements and calculations for the structurally similar molecule tetrahydrofuran (C4H8O)

    Ballistic matter waves with angular momentum: Exact solutions and applications

    Full text link
    An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schroedinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. Our theory directly applies to p-wave photodetachment in an electric field. Furthermore, illustrating the effects of extended sources, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose-Einstein condensate under the influence of gravity.Comment: 42 pages, 8 figures, extended version including photodetachment and semiclassical theor

    Armagh Observatory: Historic Building Information Modelling for Virtual Learning in Building Conservation

    Get PDF
    In this paper the recording and design for a Virtual Reality Immersive Model of Armagh Observatory is presented, which will replicate the historic buildings and landscape with distant meridian markers and position of its principal historic instruments within a model of the night sky showing the position of bright stars. The virtual reality model can be used for educational purposes allowing the instruments within the historic building model to be manipulated within 3D space to demonstrate how the position measurements of stars were made in the 18th century. A description is given of current student and researchers activities concerning on-site recording and surveying and the virtual modelling of the buildings and landscape. This is followed by a design for a Virtual Reality Immersive Model of Armagh Observatory use game engine and virtual learning platforms and concepts
    corecore