35,268 research outputs found

    Modeling and control of flexible structures

    Get PDF
    This monograph presents integrated modeling and controller design methods for flexible structures. The controllers, or compensators, developed are optimal in the linear-quadratic-Gaussian sense. The performance objectives, sensor and actuator locations and external disturbances influence both the construction of the model and the design of the finite dimensional compensator. The modeling and controller design procedures are carried out in parallel to ensure compatibility of these two aspects of the design problem. Model reduction techniques are introduced to keep both the model order and the controller order as small as possible. A linear distributed, or infinite dimensional, model is the theoretical basis for most of the text, but finite dimensional models arising from both lumped-mass and finite element approximations also play an important role. A central purpose of the approach here is to approximate an optimal infinite dimensional controller with an implementable finite dimensional compensator. Both convergence theory and numerical approximation methods are given. Simple examples are used to illustrate the theory

    Two-dimensional oscillating airfoil test apparatus

    Get PDF
    A two dimensional oscillating airfoil test apparatus is presented as a method of measuring unsteady aerodynamic forces on an airfoil or rotor blade section. The oscillating airfoil test rig, which is being built for use in an 11 X 11-foot transonic wind tunnel (speed range M = 0.4 - 1.4), will allow determination of unsteady loadings and detailed pressure distributions on representative airfoil sections undergoing simulated pitching and flapping motions. The design details of the motion generating system and supporting structure are presented. This apparatus is now in the construction phase

    Single-level resonance parameters fit nuclear cross-sections

    Get PDF
    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total

    Morphology and thermal conductivity of model organic aerogels

    Get PDF
    The intersection volume of two independent 2-level cut Gaussian random fields is proposed to model the open-cell microstructure of organic aerogels. The experimentally measured X-ray scattering intensity, surface area and solid thermal conductivity of both polymeric and colloidal organic aerogels can be accounted for by the model.Comment: 5 pages. RevTex with 4 encapsulated figures. Higher resolution figures have been submitted for publication. To be published in Phys. Rev. E (Rapid Comm.). email, [email protected]

    On Extracting Mechanical Properties from Nanoindentation at Temperatures up to 1000∘^{\circ}C

    Full text link
    Alloyed MCrAlY bond coats, where M is usually cobalt and/or nickel, are essential parts of modern turbine blades, imparting environmental resistance while mediating thermal expansivity differences. Nanoindentation allows the determination of their properties without the complexities of traditional mechanical tests, but was not previously possible near turbine operating temperatures. Here, we determine the hardness and modulus of CMSX-4 and an Amdry-386 bond coat by nanoindentation up to 1000∘^{\circ}C. Both materials exhibit a constant hardness until 400∘^{\circ}C followed by considerable softening, which in CMSX-4 is attributed to the multiple slip systems operating underneath a Berkovich indenter. The creep behaviour has been investigated via the nanoindentation hold segments. Above 700∘^{\circ}C, the observed creep exponents match the temperature-dependence of literature values in CMSX-4. In Amdry-386, nanoindentation produces creep exponents very close to literature data, implying high-temperature nanoindentation may be powerful in characterising these coatings and providing inputs for material, model and process optimisations

    The preservation of quartz grain surface textures following vehicle fire and their use in forensic enquiry

    Get PDF
    During a terrorist trial, dispute arose as to whether the temperature produced in a car fire was sufficient to destroy quartz grain surface textures. A series of seven sequential experiments showed that the temperature for quartz surface texture modification/destruction and the production of vugs, vesicles and glassy precipitation ('snowdrifting') occurred at 1200 degrees C under normal atmospheric conditions. By adding a number of man-made and natural substances, it was found that only the presence of salts depressed this modification temperature (to 900 degrees C). Experiments to determine the temperature of fire in a car indicated that the maximum temperature produced under natural conditions (810 degrees C) was insufficient to affect the quartz grain Surface textures. These results confirm the use of surface texture analysis of quartz grains recovered from the remains of cars Subjected to fire and their use as a forensic indicator. (C) 2008 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved

    Modeling Heterogeneous Materials via Two-Point Correlation Functions: II. Algorithmic Details and Applications

    Full text link
    In the first part of this series of two papers, we proposed a theoretical formalism that enables one to model and categorize heterogeneous materials (media) via two-point correlation functions S2 and introduced an efficient heterogeneous-medium (re)construction algorithm called the "lattice-point" algorithm. Here we discuss the algorithmic details of the lattice-point procedure and an algorithm modification using surface optimization to further speed up the (re)construction process. The importance of the error tolerance, which indicates to what accuracy the media are (re)constructed, is also emphasized and discussed. We apply the algorithm to generate three-dimensional digitized realizations of a Fontainebleau sandstone and a boron carbide/aluminum composite from the two- dimensional tomographic images of their slices through the materials. To ascertain whether the information contained in S2 is sufficient to capture the salient structural features, we compute the two-point cluster functions of the media, which are superior signatures of the micro-structure because they incorporate the connectedness information. We also study the reconstruction of a binary laser-speckle pattern in two dimensions, in which the algorithm fails to reproduce the pattern accurately. We conclude that in general reconstructions using S2 only work well for heterogeneous materials with single-scale structures. However, two-point information via S2 is not sufficient to accurately model multi-scale media. Moreover, we construct realizations of hypothetical materials with desired structural characteristics obtained by manipulating their two-point correlation functions.Comment: 35 pages, 19 figure

    Unified control/structure design and modeling research

    Get PDF
    To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed
    • …
    corecore