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ABSTRACT

This monograph presents integrated modeling and controller design methods
for flexible structures. The controllers, or compensators, developed are opti-
mal in the linear-quadratic-Gaussian sense. The performance objectives, sensor
and actuator locations and external disturbances influence both the construction
of the model and the design of the finite dimensional compensator. The modeling
and controller design procedures are carried out in parallel to ensure com-
patibility of these two aspects of the design problem. Model reduction tech-
niques are introduced to keep both the model order and the controller order as

small as possible.

A linear distributed, or infinite dimensional, model is the theoretical
basis for most of the text, but finite dimensional models arising from both
lumped-mass and finite element approximations also play an important role. A
central purpose of the approach here is to approximate an optimal infinite
dimensional controller with an implementable finite dimensional compensator.
Both convergence theory and numerical approximation methods are given. Simple

examples are used to illustrate the theory.
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1. Introduction

Recent years have seen increasing research in active control of flexible
structures. The primary motivation for this research is control of large
flexible aerospace structures, which are becoming larger and more flexible at
the same time that their performance requirements are becoming more stringent.
For example, in tracking and other applications, satellites with large antennae,
solar collectors and other flexible components must perform fast slew maneuvers
whiie maintaining tight control over the vibrations of their flexible elements.
Both of these conflicting objectives can be achieved only with a sophisticated
controller. There are applications also to control of robotic manipulators with
flexible 1inks, and possibly to stabilization of large civil engineering struc-

tures such as long bridges and tall buildings.

A fundamental question that often arises with regard to designing a
controller for a flexible structure is whether a finite dimensional model is
sufficient as a basis for a controller that will produce the required perfor-
mance, or is a distributed model necessary? The philosophy of this text is
that, for almost any structure, a near optimal controller can be based on some
finite dimensional approximate model but that, for large flexible space struc-
tures, the necessary order of the approximate model can be determined only in
the controller design process, with some reference to the distributed model of

the structure.

The main topic of this monograph is the design of LQG compensators based on
finite dimensional approximations of distributed models of flexible structures.
A primary objective of the approximation methods in subsequent chapters is con-

vergence criteria that indicate the appropriate order of a finite dimensional



compensator for an infinite dimensional flexible structure. The basic idea in
determination of the compensator order and gains is to approximate an ideal
infinite dimensional compensator with an implementable finite dimensional com-

pensator.,

This monograph deals with tinear-quadratic-Gaussian (LQG) compensators. The
LQG optimal control problem for distributed, or infinite dimensional, systems is
a generalization to Hilbert space of the now classical LQG problem for finite
dimensional systems. The solution to the infinite dimensional problem yields an
infinite dimensional state-estimator-based compensator, which is optimal in the
context of this monograph. By a separation principle [Bal, CP2], the problem
reduces to a deterministic linear-quadratic optimal control problem and an opti-
mal estimation, or filtering, problem with gaussian white noise. In infinite
dimensions, the control system dynamics are represented by a semigroup of
bounded linear operators instead of the matrix exponential operators in finite
dimensions, and the plant noise process may be an infinite dimensional random
process. The solutions to both the control and filtering problems involve
Riccati operator equations, which are generalizations of the Riccati matrix
equations in the finite dimensional case. Current results on the infinite
dimensional LQG problem are most complete for problems where the input and
measurement operators are bounded, as this monograph requires throughout. This
boundedness also permits the strongest approximation results. For related
control problems with unbounded input and measurement, see [Cul, CS1, LT1, LT2,

LT3].

Our primary objective is to approximate the optimal infinite dimensional LQG
compensator for a distributed model of a flexible structure with finite dimen-

sional compensators based on approximations to the structure, and to have these



finite dimensional compensators produce near optimal performance of the closed-
loop system. We discuss how the gains that determine the finite dimensional
compensators converge to the gains that determine the infinite dimensional com-
pensator, and we examine the sense in which the finite dimensional compensators
converge to the infinite dimensional compensator. With this analysis, we can
predict the performance of the closed-loop system consisting of the distributed
plant and a finite dimensional compensator that approximates the infinite dimen-

sional compensator.

Our design philosophy is to let the convergence of the finite dimensional
compensators indicate the order of the compensator that is required to produce
the desired performance of the structure. The two main factors that govern rate
of convergence are the desired performance (e.g., fast response) and the struc-
tural damping. We should note that any one of our compensators whose order is
not sufficient to approximate the infinite dimensional compensator closely will
not in general be the optimal compensator of that fixed order; i.e., the optimal
fixed-order compensator that would be constructed with the design philosophy in
[BH1, BH2]. But as we increase the order of approximation to obtain con-
vergence, our finite dimensional compensators become essentially identical to

the compensator that is optimal over compensators of all orders.

An important question, of course, is how large a finite dimensional compen-
sator we must use to approximate the infinite dimensional compensator. In [GM1,
GM2, GM3, MGl], we have found that our complete design strategy yields compen-
sators of reasonable size for distributed models of complex space structures.
This strategy in general requires two steps to obtain an implementable compen-
sator that is essentially identical to the optimal infinite dimensional compen-

sator: the first step determines the optimal compensator by letting the finite



dimensional compensators converge to it; the second step reduces, if possible,
the order of a large (converged) approximation to the optimal compensator. The
first step, which is the one involving control theory and approximation theory
for distributed systems, is the subject of Chapters 7-9. For the second step, a
simple modal truncation of the large compensator sometimes is sufficient, but
there are more sophisticated methods in finite dimensional control theory for
order reduction. For example [GM2, MG1], we have found balanced realizations,

discussed in Chapter 5, to work well for reducing large compensators.

The approximation theory in this monograph follows from the application of
approximation results in [BK1l, Gi3, Gi4] to a sequence of finite dimensional
optimal LQG problems based on a Ritz-Galerkin approximation of the flexible

structure. For the optimal linear-quadratic control problem, the approximation

theory here is a substantial improvement over that in [Gil] because here we
allow rigid-body modes, more general structural damping (including damping in
the boundary), and much more general finite element approximations. These
generalizations are necessary to accommodate common features of complex space
structures and the most useful finite element schemes. For example, we write
the equations for constructing the approximating control and estimator gains and
finite dimensional compensators in terms of matrices that are built directly
from typical mass, stiffness and damping matrices for flexible structures, along
with actuator influence matrices and measurement matrices. This means that the
numerical methods in this text for compensator design can be used for almost any
finite element model of a flexible structure, without reference to the infinite
dimensional theory that establishes the validity of the numerical methods for a

distributed model of the structure.

For the estimator problem, this monograph presents rigorous approximation

theory that has evolved from less complete results in previous research [GM1,



GM2, GM3, MG1]. As in the finite dimensional case, the infinite dimensional
optimal estimation problem is the dual of the infinite dimensional optimal
control problem, and the solutions to both problems have the same structure.
Because we exploit this duality to obtain the approximation theory for the esti-
mation problem from the approximation theory for the optimal control problem,
the analysis in this monograph is almost entirely deterministic. We discuss the
stochastic interpretation of the estimation problem and the approximating state
estimators briefly, but we are concerned mainly with deterministic questions
about the structure and convergence of approximations to an infinite dimensional
compensator and the performance -- especially stability -- of the closed-loop

systems produced by the approximating compensators.

Now we will outline the technical contents of the monograph. Chapter 2
discusses a finite dimensional model for the forced linear vibrations of a
flexible structure. Although the main goal is to design compensators for infi-
nite dimensional flexible structures, the finite dimensional approximations upon
which implementable compensators are based amount to finite dimensional models
. of flexible structures. These approximate models have the form of the finite
dimensional model in Chapter 2. Important features of flexible structures, like
natural modes and damping, are discussed in Chapter 2. Extensions of these
notions for flexible structures with gyroscopic forces are also discussed.
Gyroscopic terms appear whenever the structure rotates or contains rotating ele-

ments.

Chapter 3 defines the abstract distributed model of an infinite dimensional
flexible structure and the energy spaces to be used in most of the subsequent
chapters. We assume a finite number of actuators, since this is the case in all

applications, and we assume that the actuator influence operator is bounded.



Chapter 3 also establishes certain mathematical properties of the open-loop

system that are useful in control and approximation.

We develop the approximation of the distributed model of the structure in
Chapter 4 and prove convergence of the approximating open-loop systems. The
approximation scheme is essentially a Ritz-Galerkin method that includes modal,
including component modatl, apprqximations and most finite element approximations
of flexible structures. For convergence, we use the Trotter-Kato semigroup
approximation theorem, which was used in optimal open-loop control of hereditary
systems in [BB1] and has been used in optimal feedback control of hereditary,
hyperbolic and parabolic systems in [BK1l, Gil, Gi3] and other papers. The usual
way to invoke Trotter-Kato is to prove that the resolvents of the approximating

semigroup generators converge strongly. To prove this, we introduce an inner

product that involves both the strain-energy inner product and the damping func-
tional, and show that the resolvent of each finite dimensional semigroup genera-
tor is the projection, with respect to this special inner product, of the
resolvent of the original semigroup generator onto the approximation subspace.
The idea works as well for the adjoints of the resolvents, and when the open-
loop semigroup generator has compact resolvent, it follows from our projection

that the approximating resolvent operators converge in norm.

The speed of convergence to the optimal feedback law and optimal estimator
is affected by the manner in which the model order is increased. It is useful
to have a method of identifying important modes of the structure so they can be
added to the model first. This issue is considered in Chapter 5. Moore's
Balanced Realization Theory is introduced as a method for ordering the impor-
tance of states of a structural model. The approach takes into account input

and output coupling as well as frequency and damping. An efficient approxima-



tion scheme is developed for structures which are 1ightly damped. Balanced
Realization Theory may also be used to reduce the order of a general matrix
transfer function, and in this context it provides a tool for reducing the order

of the compensator.

Chapter 6 discusses the LQG optimal control problem for the distributed
model of the structure and establishes some estimates involving bounds on solu-
tions to infinite dimensional Riccati equations and open-loop and closed-loop
decay rates. We need these estimates for the subsequent approximation theory.
To get the approximation theory for the estimation problem, we have to give cer-
tain results on the control problem in a more general form than would be
necessary were we interested only in the control problem for flexible struc-
tures. Therefore, in Chapter 6, we first give some generic results applicable
to the LQG problem for a variety of distributed systems and then apply the

generic results to the control of flexible structures.

For closing the 1oop on the control system, we assume a finite number of
bounded linear measurements and construct the optimal state estimator, which is
infinite dimensional in general. The gains for this estimator are obtained from

the solution to an infinite dimensional Riccati equation that has the same form

as the infinite dimensional Riccati equation in the control problem.

Since the approximation issues that this book treats are fundamentally
deterministic, we make the book self-contained by defining the infinite dimen-
sional estimator as an observer, although the only justification for calling
this estimator and the corresponding compensator optimal is their interpretation
in the context of stochastic estimation and control. We discuss the stochastic
interpretation but do not use it. We say estimator and observer interchangeably

to emphasize the deterministic definition of the estimator here.



Because we assume a finite number of actuators and a bounded input operator,
the optimal feedback control law consists of a finite number of bounded 1inear
functionals on the state space, which is a Hilbert space. This means that the
feedback law can be represented in terms of a finite number of vectors, which we
call functional control gains, whose inner products with the generalized dis-
placement and velocity vectors define the control law. For any finite-rank,
bounded linear feedback law for a confrol system on a Hilbert space, the
existence of such gains is obvious and well known. A functional control gain
for a flexible structure will have one or more distributed components, or ker-
nels, corresponding to each distributed component of the structure and scalar

components corresponding to each rigid component of the structure.

Analogous to the functional control gains are functional estimator gains

corresponding to the finite number of sensor measurements. The functional gains
play a prominent role in our analysis. They give a concrete representation of
the infinite dimensional compensator and provide a criterion for convergence of

the approximating finite dimensional compensators.

The optimal LQG compensator is infinite dimensional in general. The
transfer function of this compensator is irrational, but it is still an m(number
of actuators) x p(number of sensors) matrix function of a complex variable, as
in finite dimensional control theory. The optimal closed-loop system consists

of the distributed model of the structure controlled by the optimal compensator.

We develop the approximation scheme for the LQG control problem in Chapter
7. We define a sequence of finite dimensional LQG problems, whose solutions
approximate the solution to the infinite dimensional problem of Chapter 6. The

solution to each finite dimensional problem is based on the solutions to two



Riccati matrix equations, and we give formulas for using these solutions to com-
pute approximations to the functional control and estimator gains as linear com-
binations of the basis vectors. The approximating functional gains indicate how
closely the finite dimensional compensators approximate the infinite dimensional
compensator. The brief discussion in Section 7.6 is the only place in the
monograph where stochastic estimation theory is necessary, and none of the

analysis in the rest of the monograph depends on this discussion.

Chapter 7 presents the finite dimensional equations to be used in designing
the finite dimensional compensators. This chapter contains no convergence
analysis. The equations in Chapter 7 can be used for numerical design of the
finite dimensional compensators, without worrying about the meaning of these

compensators with respect to the infinite dimensional control problem.

Chapter 8 contains convergence theory that gives conditions under which the
approximating compensators in Chapter 7 converge to the infinite dimensional
compensator in Chapter 6. This theory also describes the sense in which the
finite dimensional compensators converge. The compensator convergence is
discussed in terms of both the convergence of the approximating functional gains
and the convergence of the transfer functions of the finite dimensional compen-

sators.

In Chapter 9, we compute approximating finite dimensional compensators for a
compound structure that consists of an Euler-Bernoulli beam attached on one end
to a rotating rigid hub and on the other end to a lumped mass. We emphasize the
fact that we do not solve, or even write down, the coupled partial and ordinary
differential equations of motion. For both the definition and numerical solu-

tion of the problem, only the kinetic and strain energy functionals and a dissi-



pation functional for the damping are required. We show the approximating
functional control gains obtained by using a standard finite element approxima-
tion of the beam, and we discuss the effect on convergence of structural damping
and of the ratio of state weighting to control weighting in the performance
index. As suggested by a theorem in Chapter 8, the functional gains do not con-

verge when no structural damping is modeled.

We study the convergence of the finite dimensional compensators by examining
convergence of the approximating functional gains and the frequency responses of
the finite dimensional compensators. Also, we compute the eigenvalues of the
closed-1oop system consisting of a finite dimensional compensator and larger-
order model of the structure. These eigenvalues indicate how many modes are
controlled how much by the infinite dimensional compensator and by the finite
dimensional compensators that are essentially identical to the infinite dimen-
sional compensator as far as the input/output map. The functional gains and the
compensator frequency response indicate the order of a finite dimensional com-
pensator necessary to approximate the infinite dimensional compensator closely,

and the closed-loop eigenvalues confirm this order.

Chapter 10 discusses several further issues important for implementation of
compensators designed by the methods in this book, and suggests further research
to make the ideas presented here useful for application to other control

problems for large flexible structures.
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2. A Finite Dimensional Model of a Flexible Structure

2.1 Forced Linear Vibrations

The forced vibrations of a large class of flexible structures may be
described approximately by the second-order finite dimensional differential
equation

(2.1.1) MX+GX+DX+Kx+Fx= fo

where the generalized displacement x(t) and the generalized forcing function
fo(t) are n-vectors, the mass matrix M, damping matrix D and stiffness matrix K
are real symmetric n x n matrices, and the gyroscopic matrix G and circulatory
matrix F are real skew-symmetric n x n matrices. The mass matrix is positive
definite, and the damping matrix is nonnegative. In most cases the stiffness
matrix is also nonnegative, but some gyroscopic systems can have stiffness
matrices which are indefinite. Any zero eigenvalue of K corresponds to a rigid-
body mode. The gyroscopic matrix G results from rotating components, and the
circulatory force matrix F may result from either follower forces or damping
described in rotating reference frames. The terms M X, G X and K x are conser-

vative terms in (2.1.1) while D X and F x are nonconservative. The forcing

function fo is often expressed as
(2.1.2) fo = By u(t)

In this expression, B0 is a real n x m input distribution matrix and u(t) is an
m x 1 input vector which could represent feedback control forces, external

forces or both. In the present development, u will represent control forces or
moments. The input distribution matrif'depends on where the control or external
forces act on the system, and it determines the relative effect of the inputs on

the various coordinates.

11




The first-order form of (2.1.1) is

(2.1.3) 3 =Az + f
: T Ty
where the 2n x 2n state vector z is z(t) = [x' %] and

0 I 0
f = L ]

(2.1.4) A = ) " ,
-M™U(K+F)  -M"'(G+D) fo

Linear measurements of the state vector have the form
X
(2.1.5) y=Cz+Chu = [Cp C,] ( . ) + Co U

where C, CO' C_ and Cv are real matrices of appropriate dimensions.

Y

2.2 Natural Modes for Nongyroscopic Systems

Natural modes and natural frequencies may be defined by considering free

vibrations of the conservative part of (2.1.1), i.e.,

(2.2.1) MX+GX+Kx=20

We first examine the case where G is zero and K is nonnegative. In Laplace

transform notation, (2.2.1) reduces to:

(2.2.2) [s2M + K] x = 0

Equation (2.2.2) defines an eigenvalue problem which may be solved for s and x.
Since M and K are real symmetric matrices with M positive definite and K non-

negative, the solutions for s consist of 2n purely imaginary complex conjugates,
S. = tjwr, r<1,2,...,n where the wr's are called the natural frequencies. The
corresponding eigenvectors X, are real and are called the natural mode shapes.

12



The mode shapes are complete in R" and mode shapes corresponding to distinct

frequencies are orthogonal with respect to both M and K.

If U is the matrix whose columns are the natural mode shapes normalized with
respect to the mass matrix M, then substituting
(2.2.3) x(s) = U a(s)

in (2.2.2) and multiplying the equation on the left by UT yields

(2.2.4) sa+0la-= o',
where
2
wl 0
2
w2
(2.2.5) Q = UTKU = .
2
0 wn-

- The components of the n-vector a(t) are called the modal coordinates of the

structure, and the n scalar equations in (2.2.4) are called the modal equations

of motion.

2.3 Modal Damping

If a damping matrix D is added to (2.2.2), then (2.2.4) becomes

(2.3.1) sZa+sulbua+nla=ult,

The damping represented by the matrix D is called modal damping if UTDU is

diagonal. In this case, the damping does not couple the modes of undamped free

13




vibration and the eigenvectors of the damped structure are the same as the

eigenvectors of the undamped structure. The damping matrix UTDU is diagonal if

1 1 1

and only if M "D commutes with M "K, or equivalently, if and only if M "D and

1K have the same eigenvectors. In particular, UTDU is diagonatl if M'ID is

1 1

"

equal to a convergent power series in M K or if M_

1

D is equal to a linear com-
bination of fractional powers of M "K. Although an assumption of modal damping
greatly simplifies the analysis of vibrating structures, it is not always easy
to reconcile this assumption with physical reality. (See Section 2.5.) In the
present discussion, we are thinking primarily of the damping matrix D as
resulting from some material damping model for the flexible components of the
structure and/or models of joint damping or passive dampers attached to the
structure. In practice it is common to assume that the matrix UTDU is diagonatl
and the values of modal damping ratios are estimated from experimental data.

The only justification for this questionable assumption is that for sufficiently
1ight damping, the eigenvectors of the finite dimensional model approach the
natural mode shapes from (2.2.2). Hence, whatever the damping matrix D, as long
as it is sufficiently small, a damping matrix § for which U'DU is diagonal will

produce both eigenvalues and eigenvectors for the structure model that are close

to those produced by the correct D.

2.4 Gyroscopic Systems

If G is not zero in (2.2.1), then the procedure for finding natural frequen-
cies and natural modes is conceptually and computationally more complicated.
Meirovitch [Mel] has suggested a procedure which casts the equations in a
form analogous to (2.2.2) where the coefficient matrices are symmetric. Once in

this form, it is possible to determine the natural frequencies and natural modes

14



as above (with some differences in interpretation). The procedure depends on K
being positive definite. If K is only positive semi-definite the procedure can
still be applied, but first the rigid body modes must be removed from (2.2.1).

The system which remains is then treated as follows. First, rewrite (2.2.1) in

an augmented form which has a symmetric and a skew symmetric coefficient matrix:

X K X 0
@aen  [4r]Cy [ 5]
T
Take the Laplace transform of (2.4.1) with (XT xT) rgplaced by q.
(2.4.2) s[ "o ]q . [ M ]q - ()

The eigenvalue problem defined by (2.4.2) may be solved for s and q. The solu-

tions for s consist of 2n purely imaginary complex conjugates, s . = tjwr,

r
r=1,2,...,n. As before, the wr's are called the natural frequencies. The

corresponding solutions for q also occur in complex conjugate pairs and have the

form Q. = V. + Jj W, r=1,2,...,n. Setting Sp = jwr and q. =V

r +Jwr1n

r
(2.4.2) and equating the real and imaginary parts to zero separately yields two

equations for v_ and w_.

r r
M 0 G K 0
2.4.3 -
( ) °r 0 K ot K 0 "r 0
and
I N R MY
4.4 -W W+ v =
Mo «k|" x o] " 0

These equations may be rearranged in the form:

15



M0 (k-av~lg)  -aM Ik 0

2 )

(2.4.5) W/ Ve - V. =
0 K ML kM~ 1k 0

-1 -1

M 0 (k-aM~1g) -aM7k 0

2 )

(2.4.6) W W - W, =
0 K kM~ 1 kM~ 1k 0

The appeal of (2.4.5) and (2.4.6) is that in each equation, the left hand matrix
is symmetric and positive definite and the right hand matrix is symmetric as in
the case where G is zero (see Eq. (2.2.2)). These features permit the use of
simpler numerical algorithms, and the eigenvalue analysis proceeds as in the
nongyroscopic case. There are, however, some differences in the interpretation
of the eigenvectors since these vectors now include velocities as well as posi-
tion coordinates. These eigenvectors are not in general referred to as natural
modes. Refs. [Mel, Me2, Me3] discuss the solution and interpretation of (2.4.5)
and (2.4.6) at some length.

It will also be noted that Eqs. (2.4.5) and (2.4.6) are identical. This

does not mean that Ve and w. are jdentical. From (2.4.3) and (2.4.4) one can

show that Ve and W, must satisfy the equation

(2.4.7) W, = v

Thus only one eigenvalue problem must be solved to obtain both W and Ve If

(2.4.5) is used to obtain v_, then (2.4.7) can be used to calculate w.. The

r’ r

L obtained in this way will satisfy (2.4.6).
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2.5 A Lumped Mass Example

As noted in section 2.3, there may be some difficulty in justifying the
assumption of modal damping. This will now be illustrated by means of the
simple example shown in Figure 2.1. This structure consists of three masses,
two springs and three dampers. The three degrees of freedom include one rigid-
body mode and two elastic modes. It is instructive to consider the implications
of assuming modal damping with the same damping ratio in each mode. Because we
want the damping in each mode to be proportional to the undamped frequency of
that mode, there should be no damping in the rigid-body mode, so there are no

dampers attached to the ground.

/] CS

/]

/ 11

g 1

/]

/1 Cl Cz

/

A 71 JT-I

/1 m1 ! m, __I m.
g | E AN

g N\ \— ’

A , k k

/— -

A Xl

A X

Ve -

] <y

Figure 2.1. Lumped Mass Example

For the coordinates X1s X5 and X3 shown in Figure 2.1, the mass stiffness

and damping matrices are

my 0 k -k 0
(2.5.1) M = 0 mz 0 Y K = "k 2k 'k
0 0 m 0 -k K

and
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(c1+c2) -C1 -c3
(2.5.2) D = -, (€1¥¢) -Cy

The damping coefficients Cqs ¢y and c3 are nonnegative. Suppose that we have

the (dimensionless) mass and spring constants

m1 = 001 mz = 1.0 m3 = 0.1 k = 1000

TDU in the modal equation (2.3.1) to be equal to, say, .02 times

For the matrix U
the square root of the matrix on the right hand side of (2.2.5) with n = 3 (i.e.,

for one percent critical damping in each mode) the damping matrix D must be

0.010379 -0.014434 0.004055
(2.5.3) D =] -0.014434 0.028868 -0.014434 | .
0.004055 -0.014434 0.010379

No combination of the damping coefficients in Eq. (2.5.2) produces this damping

matrix.

With more elaborate combinations of pulleys and dampers, infinitely many
damping configurations are possible, so it may be possible to realize the
damping matrix in (2.5.3) by some arrangement of dampers. But even if a reali-
zation of the required damping exists, it may be a very unlikely physical con-
figuration. The difficulty of physically realizing constant-damping-ratio modal
damping in this example suggests that assuming a form, particularly a diagonal
form, for the damping matrix in the modal equations of motion, without con-
sidering the physical sources of the damping, can produce improbable damping

models.
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3. An Infinite Dimensional Model

3.1 Infinite Dimensional Equation of Motion

Now we will describe the abstract model that we will use throughout the book
to represent an infinite dimensional flexible structure. The generalized
displacement vector x(t) is in a real Hilbert space H, the control vector u(t)

is in R™ for some finite m and x(t) is a mild solution to
(3.1.1)  X(t) + DOX(t) + on(t) = Bou(t), t>o0.

In this equation of motion, the 1inear stiffness operator A0 is densely defined
and selfadjoint with compact resolvent and at most a finite number of negative
eigenvalues. The stiffness operators for structures involving beams, plates and
membranes will satisfy the hypotheses here on AO' Any nonpositive eigenvalues
of A0 will represent rigid-body modes. For now, we will assume that the damping
operator D0 is symmetric, nonnegative and bounded relative to Ao; this includes
linear material damping in continuous structural components and linear damping
from a viscous fluid surrounding the structure (not l1ikely in space applica-
tions). In Section 3.4, we will discuss a more general type of damping that we
will allow from then on, except where otherwise noted. The input operator B0 is
a linear operator from R™ to H, and hence bounded (so that this model does not

include boundary control).

For the distributed model of a flexible structure, we will not discuss a
gyroscopic operator corresponding to the matrix G in Chapter 2. It is straight-
forward to add a bounded skew selfadjoint operator to the damping operator Do
and generalize our infinite dimensional system theory and approximation theory
appropriately, but we do not want to complicate the exposition of this and sub-

sequent chapters by carrying this extra detail along.
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Remark 3.1. Our analysis includes the system
(3.1.1") MgX(t) + Dok(t) + Agx(t) = Bqu(t), t>o0,

where the mass operator M0 is a selfadjoint, bounded and coercive linear opera-
tor on a real Hilbert space HO' The operators AO’ B0 and D0 in (3.1.1') have
the same properties with respect to H0 that the corresponding operators in
(3.1.1) have with respect to H. To include (3.1.1') in our analysis, we need
only take H to be H0 with the norm-equivalent inner product <-,->H = <M0-,->H0,

and multiply (3.1.1') on the left by M'l. In H, the operator M'lA is self-
0 0°0

adjoint with compact resolvent, and Mal

D0 is symmetric and nonnegative. With no
loss of generality, then, we will refer henceforth only to (3.1.1) and assume

that the H-inner product accounts for the mass distribution. VVV

By natural modes of a structure represented by (3.1.1), we will mean the

eigenvectors ¢j of the eigenvalue problem

(30102) Aj¢j = AO ¢J-
From our hypotheses on AO, it follows that these eigenvalues form an infinitely
increasing sequence of real numbers, of which all but a finite number are posi-

tive. Also, the corresponding eigenvectors are complete in H and satisfy

(3.1.3) <8y, 057 = <Ay by, 033y = 0, i# j.

(For these standard properties of the eigenvalue problem, see [Bal, Ka2] and

other texts.) For A, > 0, w, =V Aj > 0 is a natural frequency.

J J

3.2 The Energy Spaces

To discuss the damping in (3.1.1) more precisely, to derive the first-order

form of (3.1.1) and to specify the class of measurements that we will consider,
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we need to define two additional Hilbert spaces, the strain energy space V and
the total energy space E, in terms of the basic space H and the stiffness opera-
tor A

0° We choose a bounded selfadjoint linear operator A, on H such that A

1 1
is positive definite on the eigenspace of A0 corresponding to nonpositive eigen-

values of A0 and the null space of A, is the closed span of the eigenvectors of

1
A0 corresponding to positive eigenvalues. Thus KO = A0 + A1 is coercive; i.e.,

there exists p > 0 such that

~ 2 ~
(3.2.1)  <Agx,x> 2 p Ix]€, x € D(Ag) = D(Ag)-
We define the Hilbert space V to be the completion of D(Ao) with respect to the
inner product
(3.2.2) <v1,v2>v = <A0 Vl’V2>H’ VisVy € D(AO).

g %

Equivaiently, V = D(ig) and <vy, vy>, = <Ag vy, KO Voo

In the usual way, we will use the imbedding
(3.2.3) VeH=H ey,

where the injection from V into H and from H' into V' are continuous with dense

’ranges. We denote by AV the Riesz map from V onto its dual V'; j.e.,
(3.2.4) VL,V oy = (Ayvp)v Vi» vV EV.

Then KO is the restriction of A, to D(A;) in the sense that

(3.2.5) (Avvl)v = <v,A0v1>H , v, € D(Ao), vev.

Remark 3.2. We began our description of the control system model with (3.1.1)
because its form is familiar in the context of flexible structures. The stiff-
ness operator AO’ for example, is the infinite dimensional analogue of the
stiffness matrix in Chapter 2. In applications, though, it is often easier to

begin with a strain-energy functional from which the correct strain-energy inner

21



product is obvious. There is a one-to-one correspondence between the stiffness
operator ;0 and the strain-energy space V. We have seen how V is defined in
terms of RO' If V is specified first, then ;0 is defined in terms of the Riesz
map for V by (3.2.5) with D(A,) = Ay'H (see [Sh1] also for this approach).

Either way, the relationship between A0 and V is the same.

This means that if the space H and its inner product (determined by kinetic
energy; recall Remark 3.1) and the space V and its inner product (determined by
strain energy and geometric boundary conditions) are written down, then the
operators XO and AV are determined implicitly. For both our theoretical analy-
sis and our numerical computation, only the H and V inner products are needed;

1

neither AO’ AV nor A; need be written down (although it is instructive to

write the partial differential operator A0 for simple examp1es, as in Section

3.3). VW

Now we define the total energy space E = V x H, noting that when A0 is coer-
cive and x(t) is the solution to (3.1.1), then |(x(t),i(t))|§ is twice the
total energy (kinetic plus potential) in the system. The total energy space is
the natural space for the infinite dimensional state-space model of the flexible
structure; i.e., the first order form of (3.1.1), which we will derive in

Section 3.5.

3.3 Clamped-Free Beam Example

For a simple example, we consider the clamped-free Euler-Bernoulli beam in
Figure 3.1. The length of the beam is 1 and the product of the moduius of
elasticity and the second moment of the cross section is EI. The single control

force u is spread uniformly over the last five percent of the beam at the right

end.
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Figure 3.1: Clamped-free Euler-Bernoulli Beam

For this example, the most natural Hilbert space H is L2(0,1), and the

stiffness operator is

{g € H*(0,1): g(0) = g'(0)

4,4
(3.3.1) Ay = EI d'/ds’ , D(Ay)

=g (1) =g (1) =0}
We model Kelvin-Voigt viscoelastic damping in the beam [CP1], which means that

the damping operator is

(3.3.2) O A

0~ % "o

where Co is a positive constant. The actuator influence operator is given by

'We denote by HX(0,1) the ktP-order Sobolev space of functions on (0,1). A
function f is in this Hilbert space if f, along with 1ts(g rivatives of orders
up through k-l,kare absolutely continuous on [0,1] and f € L2(0,1). The
square of the H (0,1) norm of f is

K
1. .
1112 - 2:: J [af(t)/dtI )2 dt.

kK 510
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0, 0<s< .95,

(3.3.3) By u =uby by(s) =
1, .95 < s < 1.

Since Ao in this example is coercive, A1 = 0 and A0 = AO' The strain-energy
space V in this example is {v € H2(0,1): v(0) = v'(0) = 0}, which follows from

defining the inner product

1
(3.3.4) <v1, v2>V = <A0v1, v2>H = J v
0

dS, Vl, V2 D(Ao)!

according to (3.2.2) and completing D(AO) with respect to the norm induced by
0

this inner product. Although the geometric boundary conditions v(0) = v'(0)
are the only boundary conditions retained explicitly in V, the boundary con-
ditions v''(0) = v'*''(1) = 0 are retained implicitly by the imbedding of V in H
and the Riesz map for V because specifying H and V is equivalent to specifying H
and AO’ as discussed in Remark 3.2. That H and V determine all of the boundary
conditions for AO should r?mind readers experienced in the structural dynamics

of applying Hamilton's principle to derive the equations of motion for a distrib-
uted model of a flexible structure: once the energy functionals and geometric
boundary conditions are defined, the natural boundary conditions follow from
integrating by parts in the spatial domain.

We should note that the coercive, selfadjoint operator Ag exists for this
example, but that it is not a differential operator. This square-root operator
cannot be written down in closed form, but its infinite dimensional matrix
representation with respect to its eigenvectors is diagonal with the natural
frequencies of the clamped-free beam on the diagonal. The operators A0 and

Ag have the same eigenvectors, which are complete and mutually orthogonal in
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both H and V.
3.4 The Damping Functional and Operator

Before we discuss the first-order form of (3.1.1), we will state the damping
hypothesis that we will use from here on and discuss the representation of the
damping admitted under this hypothesis. To construct the first-order form of
(3.1.1), we do not require an operator D0 defined from some subset of H into H.
Rather,.we need only the weaker assumption that there exists a damping (or

dissipation) functional
(3.4.1)  dg(-,*) : VXV —>R

such that d, is bilinear, symmetric, continuous on V x V and nonnegative. Under

0
this hypothesis on do, there is a unique nonnegative, selfadjoint operator

Dv € L(V) such that

(3.4.2) do(vl,vz) = <va1, Vody = <v1, DVVZ)V’ Vis Vy € V.
If we have a symmetric, nonnegative damping operator D0 defined from D(Ao)
into H such that D0 is bounded relative to AO’ then <DO-,->H defines a bilinear,

symmetric, continuous, nonnegative functional on a dense subset of V x V. In

this case, d0 is the unique extension of this functional to V x V and

-1

(That D0 being Ao—bounded implies continuity of <DO-,->H with respect to the V

norm follows from [Ka2, Theorem 4.12, page 292].)

In applications, either D0 or d0 should be straightforward to write from the
physics of the structure, but Dv is difficult to determine except for simple

structures or damping that is a simple function of stiffness.
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Remark 3.3. For our theoretical analysis and our numerical work, the damping
functional d0 is sufficient; it is not necessary to write down either of the
damping operators Dv and DO' (As with the stiffness operator, it is instructive

to write the damping operators for simple examples; see Section 3.7.)

3.5 The Semigroup Generator and the First-Order Form of the Equation of Motion

We want to write (3.1.1) as a well-posed first-order evolution equation on
the total energy space E = V x H. To do this, we will determine the appropriate
semigroup generator for the open-ioop system, so that Co-semigroup theory will
guarantee the existence and uniqueness of solutions to the state-space differen-
tial equation under appropriate conditions on u(t). We will derive the
semigroup generator by constructing its inverse explicitly, and then we will try
to convince the reader that we do have the appropriate semigroup generator.

This approach seems mathematically efficient, and we will need the inverse of

the generator for approximation theory.

1

We define A~" € L(E,E) by
~-1
-Dy -Ay
(3.5.1) i1 )
I 0

This operator is clearly one-to-one, and its range is dense, since V is dense in

H and D(Ao) is dense in V. Now, we take

(3.5.2) &= (DL,

Direct calculation of the inner product shows

(3.5.3)  KHQ) L () = -dplnn),
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so that A is dissipative with dense domain. Also, since D(A™}) = E, & s maxi-
mal dissipative by [Gil, Theorem 2.1]. Therefore, A generates a Co-contraction

semigroup on E.

Finally, the open-loop semigroup generator is

(3.5.4) A=R+ . D(A) = D(R),

where A1 is the bounded linear operator discussed in Section 3.2. With

0
(3.5.5) B = [ ] e L(RM,E),

the first-order form of (3.1.1) is
(3.5.6) z(t) = A z(t) + B u(t), t>o,
where z = (x, i) € E.

To see that A is indeed the appropriate open-loop semigroup generator, sup-
pose that A0 is coercive (so that A1 = 0) and that we have a symmetric, non-
negative Ao-bounded damping operator DO’ Then the appropriate generator should

be a maximal dissipative extension of the operator
(3.5.7) A= , D(A) = D(Ap) x D(A

o)

It is shown in [Gil, Section 2] that A has a unique maximal dissipative exten-

sion, and after noting (3.4.3), it can be shown easily that the A(= A) defined
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by (3.5.1) and (3.5.2) is an extension of A.

We should note that Showalter [Shl, Chapter VI] elegantly derives a
semigroup generator for a class of second-order systems that includes the
flexible-structure model here. The presentation here is most useful for our
approximation theory because of the explicit construction of the inverse of the
semigroup generator. For the purposes of this paper, we do not need to charac-
terize the operator A itself more explicitly, but we should make the following
points.

First, from il we see

(3.5.8) D(A) = {(x,X): X eV, x + Dvi € D(Ao)}.

In applications, the "natural boundary conditions" can be determined from
(3.5.8) and the boundary conditions included in the definition of D(Ao) (see
Section 3.8), although we will not need the natural boundary conditions. In the
case of a damping operator that is bounded relative to Ag, D(A) = D(Ao) x V.

If the damping operator is bounded relative to Ag for u < 1, then A has compact

resolvent.

In many structural applications, the open-loop semigroup is analytic,
although this has been proved only for certain important cases. Showalter
obtains an analytic semigroup when the damping functional is V-coercive; for
example, when there exists a damping operator that is both Ao-bounded'and as
strong as AO‘ Such a damping operator results from the Voigt-Kelvin viscoelastic
material model. Also, it can be shown that the semigroup is analytic for a
damping operator equal to COAE for ¥ < u <1 and Cp @ positive scalar. The
case u = ¥%, which produces the same damping ratio in all modes, is especially

common in structural models, and Chen and Russell [CR1] have shown that the
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semigroup is analytic for a more general class of damping operators involving

g
Ao.

We can guarantee that the open-loop semigroup generator is a spectral opera-
tor (i.e., its eigenvectors are complete in E) only for a damping operator that
is a linear combination of an H-bounded operator and a fractional power of Ag-
However, nowhere do we use or assume anything about the eigenvectors of either
the open-loop or the closed-l1oop semigroup generator. The natural modes -- of

undamped free vibration -- in (3.1.2) are always complete in both H and V.

The Adjoint of the Semigroup Generator. Since Dv is selfadjoint on V,
direct calculation shows that A~ = (A°1)" -- the adjoint of Al with respect to

the E-inner product -- is

-1
PR B A
(3.5.9) A " = .
-1 0

~k ~k ] . ~ak L. .
Then A = (A ) “. Having A explicitly facilitates proving strong convergence

for approximating adjoint semigroups.

Exponential Stability of the Open-Loop System. According to the following

theorem, a sufficient condition for the open-loop system to be uniformly expo-

nentially stable is that there be no rigid-body modes and the damping be coer-
cive. Coercive damping means, basically, that all structural components have
positive damping. That the decay rate given for the energy norm depends only on
the lower bound for the stiffness operator and the upper and lower bounds for
the damping functional is essential for convergence results for the approxi-

mating optimal control problems of subsequent chapters.

Theorem 3.4. Suppose that A0 and d0 are H-coercive. Let p be the positive

constant in (3.2.1), and let 50 and 81 be positive constants such that
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(3.5.10) 85lvl3 < dg(v,v) < 5,1v13, VeV,

Then

§
0 % -t
3.5.11 T(tY| < (1 +—=+ 8,8,/2)" ex [ ] . t 0.
( ) 1T = ( Vo 170 ) P 2/80 +2/yp+81

For a proof of this theorem, see [GAl]. The proof uses an explicit Liapunov

functional for the open-loop system.

3.6 Representation of the Open-Loop Semigroup in the Case of Uncoupled Modes

Since the eigenvectors ¢j of A0 are complete in V, x(t) can be written

(3.6.1)  x(t) = Z a (t) o,
j=1

where aj(t) js the modal amplitude for the jth mode. The energy space E = V x H

is isomorphic to the space 22E of sequences

(3.6.2) a

that are square summable in the sense of

(3.6.3) |a|2 = }:: (wg a? + ag) (=
e Ly T

where u; is the jth natural frequency.
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When a damping operator D0 exists and has the same eigenvectors as AO’ the
damping leaves the natural modes of free vibration uncoupled and (3.1.1) is

equivalent to the infinite set of modal equations

. . 2
(3.6.4)  &y(t) + 2Ty 0y a5(t) +uf ag(t) = By u(t)

where

|2

(3.6.5) cJ = <Dy ¢ M /2wj|¢j )

3" %
is the damping ratio of the jth mode and Byy isalxm matrix. On %,, the

semigroup T(t) is represented by an infinite dimensional matrix with all zeros

except for 2 x 2 blocks Tj(t) centered on the main diagonal and given by

(3.6.6) Tj(t) = exp t).

-W -chwj

3.7 The Measurement Equation and Operators

Recall that the second-order equation (3.1.1) and the first-order equation

(3.5.6) are equivalent. We assume that the measurement has the form

(3.7.1) y(t) = C0 u(t) + C z(t)

where y(t) is a p-vector, C0 is a real p x m matrix and C is a bounded linear

operator from E to RP. Since E = V x H, C must have the form

(3.7.2) c=[Cc, ¢

1 Gl

where C1 and C2 are bounded linear operators from V and H, respectively, to rRP.

This means that (3.7.1) can be written

31



(3.7.3) y(t) = Co u(t) + C1 x(t) + C, x(t).

Also, according to Riesz, if (C z(t))i is the ith component of the p-vector

C z(t), then
(3.7.4) (C z(t))1 = CCyyr Xy + <Cpy0 KO, i=1, eeey P,

where ¢ i € V and c21 € H.

1

3.8 Further Caments on the Clamped-Free Beam

According to Section 3.5, once the basic space H was defined in Section 3.3
to be L2(0,1), the first-order form of the equation of motion for the beam in
Section 3.3 was determined implicitly by the stiffness operator in (3.3.1), the
damping operator in (3.3.2) and the actuator influence operator in (3.3.3). It
follows from Theorem 3.4 that the open-loop beam (i.e., the free response of the
beam) is uniformly exponentially stable for any positive damping coefficient o

in (3.3.2).

As discussed in Remark 3.2, specifying the strain-energy inner product in
(3.3.4) and the boundary conditions on the left end of the beam would have been
equivalent to specifying AO‘ Also, according to Section 3.4, specifying the

dissipation functional to be

(3.8.1) dO(vl’ v2) = €y Vys Vodys Vis Vp €V,
would have been equivalent to specifying the damping operator DO’

To see the advantage of being able to use the damping functional instead of
the damping operator, suppose that we attach a linear damper with positive

coefficient ¢y between the right end of the beam and ground. Then there is no

damping operator DO’ but it is easy to write the dissipation functional
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(3.8.2) do(vl, v2) = ¢, <v1, Vody + ¢y vl(l)vz(l), Vis Vy € v,

since this means that the rate of energy dissipation for the open-loop beam is

. . . 1-|| 2 * 2
(3.8.3) E = do(x(t), x(t)) = -¢g I x (t,s)" ds - c; x(t,1)".
0

For none of our purposes in subsequent chapters do we need to go further in
characterizing the damping. Nonetheless, it is instructive to look at the
natural boundary conditions that the damping produces and how these boundary
conditidns can be determined with the results discussed so far. In this example
(and probably only a few others), it is easy to write the operator DV discussed
in Section 3.4. The part of Dv corresponding to the Kelvin-Voigt damping is o
times the identity in V, which follows from (3.4.3). The part of DV correspond-
ing to the linear damper on the end of the beam is less obvious, but it can be
determined with (3.4.2) and integration by parts. The result (for the total

damping functional in (3.8.2)) is

(3.8.4) va = Cgv + v(1l) 99

where 9q € V is
(3.8.5) gy(s) = (1 - 5)3/6 + s/2 - 1/6, 0<s < 1.

The natural boundary conditions for the equation of motion for the beam
follow from (3.5.8). With the D(Ao) and V defined in Section 3.3 and Dv given
by (3.8.4) and (3.8.5), (3.5.8) says that the domain of the semigroup generator

contains those function pairs (x, X) that satisfy x e V, x + Co XeVe H4(0,1),
(3.8.6) (x + ¢ ') =0

and

(3.8.7)  (x + ¢ ') + ¢, X(1) = 0.

These last two equations are the natural boundary conditions.
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3.9 Hub-Beam-Tip-Mass Example

One end of the Euler-Bernoulli beam in Figure 3.2 is attached rigidly

(cantilevered) to a rigid disc which is free to rotate about its center, point

0, which is fixed. Also, a point mass my is attached to the other end of the

beam. The control is a torque u applied to the disc, and all motion is in the

plane.
Figure 3.2. Flexible Structure
Table 3.1. Structural Data
r = hub radius 10 in
1 = beam length 100 in
I0 = hub moment of inertia about axis
perpendicular to page through O 100 siug in2
m, = beam mass per unit length .01 slug/in
m, = tip mass 1 slug
EI = product of elastic modulus and second
moment of cross section for beam 13,333 slg in3/sec2
Fundamental frequency of undamped structure .9672 rad/sec
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The angle 6 represents the rotation of the disc (the rigid-body mode),
w(t,*) is the elastic deflection of the beam from the rigid-body position, and
wl(t) is the displacement of m, from the rigid-body position. For technical

reasons, we do not yet impose the condition wl(t) = w(t,1); more on this later.

The control problem is to stabilize rigid-body motions and linear (small)
transverse elastic vibrations about the state 8 =0 and w = 0. Our linear model
assumes not only that the elastic deflection of the beam is linear but also that
the axial inertial force produced by the rigid-body angular velocity has negli-
gible effect on the bending stiffness of the beam. The rigid-body angle need

not be small.

For this example, it is a straightforward exercise to derive the three
coupled differential equations (one partial and two ordinary differential
equations) of motion in 8, w and Wi and they do have the form (3.1.1').
However, to emphasize the fact that we do not use the explicit differential
equations, we will not write these equations here. Rather, we will write only
what normally is needed in applications: the kinetic and strain-energy func-

tionals, the damping functional and the actuator influence operator.

Remark 3.1 applies to this example, and to most examples with complex struc-

tures. The generalized displacement vector is

(3.9.1) «x = (e,w,wl) € Hy = R x L,(0,1) x R.
The kinetic energy in the system is
(3.9.2) Kinetic Energy = 1/2 <x,)‘<>H

where H is H0 with the inner product
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1 R .
(3.9.3)  <x,®y = m I [w + (r+s)8] [W + (r+s)0] ds + I, 08
0

+ ml[w1 + (r+1)e][w1 + (r+1)8] .
As in most applications we need not write the mass operator explicitly, but
there exists a unique selfadjoint linear operator M0 on H0 such that

(3.9.4) XyX>y = <Mox,x>H0.

It is easy to see that MO is bounded and coercive. Hence H0 and H have equiva-

lent norms.
The input operator for (3.1.1') (which maps R to HO) is

(3.9.5) By = (1,0,0).

Since we multiply (3.1.1') by Malto get (3.1.1), the input operator for (3.1.1)
o ru-l
is (M3'By). Note that

-1, +*H *
(3.9.6) (M0 BO) = By

where (M1B.)*" is the H-adjoint of (M 1B,) and B is the H,-adjoint of B
o Bp o Bo 0 0 0

Remark 3.2 also applies here. The only strain energy is in the beam and is

given by

(3.9.7) Strain Energy = 1/2 a(x,x)
with

1
(3.9.8)  a(x,) = EI j w'a' ds,
0

2

where (-)" = dz(-)/ds . To make a(*,*) into an inner product, we must account

for rigid-body rotation. Thus we set
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(3.9.9)  <x,%>, = a(x,%) + 68

v
and define
(3.9.10) V = {x = (8,0,6(1)):6 € H2(0,1), 6(0) = ¢'(0) = O}.
Also, we have
(3.9.11)  <x,%> = a(x,) + BByx,RoHy = a(x,%) + <(M5'By) (Mg By) ", %>y,

so that A, = BOBO’ or (M Bo)(M0 0) depending on whether the Hy or the H-
inner product is used in computing the V-inner product. But we need neither A1
nor Ao explicitly. We need only (3.9.8) and (3.9.9), along with (3.9.3), to

compute the required inner products.

As mentioned in Remark 3.2, the operator KO can be defined now by (3.2.5),

and the stiffness operator is A0 = KO - A Using the Ho—inner product in

1.
(3.2.5) yields the Ao for (3.1.1'), and using the H-inner product yields the A
1

0

for (3.1.1), which is My~ following the A, for (3.1.1'). The Ag for (3.1.1")

is simple, and the reader might write it out. We will not, because we do not

.nheed it.

We will point out that D(AO) requires both the geometric boundary con-
ditions in V and the natural boundary condition w''(t,1) = 0; i.e., zero moment

on the right end. That the geometric boundary conditions
(3.9.12) w(t,0) = w' (t,0) =0
and

(3.9.13) w(t,1) = wl(t)

are imposed in V but not in H -- i.e., on the generalized displacement but not

on the generalized velocity -- is common in distributed models of flexible
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structures. The natural norm for expressing the kinetic energy of distributed
components is the L2 norm, which cannot preserve constraints on sets of zero
measure. Because the strain energy involves spatial derivatives, the stronger
strain-energy norm can preserve the geometric boundary conditions (although, as
for the boundary slope of an elastic plate, the V-norm may impose some of these
boundary conditions in an L2 rather than a pointwise sense). The strain-energy
norm is based on the material model of the distributed components of the system,
and it should not be surprising that such a norm is required to connect the

various structural components.

We assume that the beam has Voigt-Kelvin viscoelastic damping, so that the

damping operator in (3.1.1) is

(3.9.14) D A

0° % "o

where o is a constant. This means that the damping functional is

(3.9.15) do(x,i) = ¢ a(x,x) , X,X € V.

38



4, Approximation of the Distributed Model of the Structure

4.1 Abstract Finite Element Approximation

We begin this chapter by discussing a Ritz-Galerkin approximation framework
that accommodates most common finite element schemes for flexible structures.
The only hypotheses for this abstract approximation theory (in addition to those
given in Chapter 3 for the infinite dimensional structural model) are the
requirements stated in Hypothesis 4.1 for the basis vectors. As indicated in

Section 4.1.2, modal approximation fits easily into this framework.

We assume that the basic space H is given, that the various operators and
functionals associated with (3.1.1) satisfy the hypotheses stated in Chapter 3
and that the energy spaces V and E = V x H are defined as in Section 3.2 of

Chapter 3.

Hypothesis 4.1. There exists a sequence of finite dimensional subspaces Vn of V
such that the sequence of orthogonal projections Pvn converges V-strongly to the
identity, where PVn is the V-projection onto Vn' Also, each Vn is the span of n

linearly independent vectors ej. v

Since it should cause no confusion, we will omit the subscript n and write
just eJ, keeping in mind that the basis vectors may change from one Vn to
another, as in most finite element schemes. Also, we will refer to the Hilbert
space En = Vn X Vn’ which has the same inner product as E = V x H.

4.1.1 Approximating Equations of Motion

For n 2 1, we approximate x(t) (the solution to (3.1.1)) by
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n
(4.1.1) xn(t) = E:: gj(t)ej

where E(t) = [&l(t) E,(t) ... En(t)]T satisfies
(4.1.2) M"E + D" + K¢ = BJu

and the mass matrix Mn, damping matrix Dn, stiffness matrix K", and actuator

influence matrix Bg are given by

n o_ n _
M" = [<ey,e, >H]. D" = [do(ei,ej)],
(4.1.3) K" - [<Aé/2e Aélz J H] = [<ei,eJ> 1 - [<A €58 >H],
BN = [<e ,b:>.].
0 J°H

Of course, (4.1.2) can be written as

(4.1.4) n = A" o+ 8N
where

£
(4.105) n = (.)

3
and

0 I 0
(4.1.6) [\ U
M oD M'"Bg

Note 4.2. Throughout this text, we use the superscript n in the designation of

th approximating system and control problem, like A", Bn, Mn,

matrices in the n
etc. Hence the superscript n indicates the order of approximation -- and it

never indicates a power of the matrix. By M'", we denote the inverse of the
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mass matrix M". In the designation of a linear operator in the nth

approxima-
tion, we use the subscript n. For example, An and Bn are the operators whose

matrix representations are A" and Bn, respectively. VWV

In the class of approximation schemes considered here, the approximation to

the equivalent measurement equations (3.7.1) and (3.7.3) can be written

] . né
with
n _ [N n
(4.1.8) C' = [Cl CZ]
where the ith column of the p x n matrix Cq is the p-vector equal to Clei and
the ith column of the p x n matrix C; is the p-vector equal to Czei. The Yn

in (4.1.7) would be equal to the exact measurement if the true generalized
displacement vector x(t) were a linear combination of the first n basis vectors
for all t (i.e., if x(t) were equal to the xn(t) in (4.1.1)) so that we could
take E = Eno

4.1.2 Modal Approximation

The equations in Section 4.1.1 include the important case where the basis
vectors ej are the mode shapes of undamped, free vibration (i.e., the eigenvec-
tors of the stiffness operator Ao; recall (3.1.2) and (3.1.3)). In this case,
the mode shapes usually are normalized with respect to mass so that the mass
matrix M" is the n x n jdentity matrix. The corresponding stiffness matrix then

is
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(4.1.9) K" = .

where the wj's are the natural frequencies of undamped, free vibration (i.e.,
the diagonal elements of K" are the first n eigenvalues of Ao). A zero fre-

quency corresponds to a rigid-body mode.

That Hypothesis 4.1 holds for modal approximation follows from the fact that

the operator A0 Iv is a compact selfadjoint operator on V, since A0 and Aal

have the same eigenvectors.
4.2 Convergence
It is useful to note that (4.1.1) and (4.1.2) or (4.1.4) are equivalent to

(4.2.1) in(t) = Azo(t) + B u(t),

—-— " m
where zn = (xn,xn) € En and An € L(En) and Bn € L(R ,En) are the operators whose

matrix representations are given in (4.1.6). Also, for any real A,

1 1

Vn hn
(4.2.2) (A - An) =

v2 h2

n n
is equivalent to
(4.2.3) A" + 20" + kMol = (M + M)pl + M"g2
and
(4.2.4) az = Aql - Bl
if
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1,2.

n n

J_ J J . J ;

(4.2.5) vy = Z ase; and hn = Z Biei’ Jj
i=1 i=1

(Substituting A" and (4.2.5) into (4.2.2) yields (4.2.3) and (4.2.4).)

Next, we will prepare to invoke the Trotter-Kato semigroup approximation
theorem to show how (4.1.2), (4.1.4) and (4.2.1) approximate (3.1.1) and
(3.5.6). For this, we will treat only the case in which A0 is coercive (no
rigid-body modes), so that A1 = 0 and ;0 = Ao; the general case is a straight-
forward extension. In the present case, then, the open-loop semigroup generator
A is maximal dissipative, and for each n, AN s dissipative on E". The main
jdea here is to project (7\-A)"1 onto Vn in a certain inner product and observe

-1

that the result is exactly (A-An) , where An is the operator on Vn in (4.2.1)

and (4.2.2). Of course, we need only do this for real A > 0.

For real A > 0, then, we define an inner product on V by

(4.2.6) Coaedy = ARG oy 4 Mdg(e,e) + <oyed

A Ve

Under the hypotheses in Chapter 2 on dO’ <°">A is clearly norm-equivalent to
<-,->v. For n > 1, we let Pn(A) be the projection of V onto vn in the inner

product <°’°>A' If hl, h2 € H,

v1 h1
(4.2.7) (A-A) =
v2 h2
is equivalent to
vl 1 v1 h1
(4.2.8) = A A - .
v2 v2 h2
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1

With A~* from (3.5.1), (4.2.8) is equivalent to
2,-1y. -1 _ (2,1 1 ,-1.2
(4.2.9) (1 +AD, + A°Ag" )" = (Mg + D )R + Ag'h
and
(4.2.10) vZ o vl -l
If
1 1 2 2
(4.2.11) Vg = Pn(A)v and vy = P (A5,
it follows from (4.2.6) and (4.2.9) that
(4.2.12) ce vl = ce vy
ce i*’n’A T i’ A
2 1.1 1 1
= A <ei,A0A0 v >H + A(ei,va >v + <e1,v >v

2,-1 1
<e1,(A Ag" + ADy + I)v >y

_ -1 1 -1, 2
= <e1,(AA0 + Dv)h + Ay hDy
and from (4.2.10) that
2, _ 2, _ 1 1
(4.2.13) <ei,vn> = <e1,v > = A(ei,v >A - <e1,h >A'
1 1 2 2 1 2 .1 2

Now, for h™ = hn € Vn, h® = hn € Vn, and Vn’ v hn and hn written as in

n!
(4.2.5), (4.2.12) and (4.2.13) yield (4.2.3) and (4.2.4) again.

This shows that
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Pn(A) 0

(4.2.14) A-A M = (a-a) 7
0 Pn(h) n
which yields
P, (A) 0
-1 -1
(4.2.15) (A-A) Pe = (A-A)) P ,
0 Pn(A) n n

where P. is the E-projection of E onto En‘ The projection PEn can be written

En

(4.2.16) P. = R
En o b

where Pvn is the V-projection onto Vn’ as before, and PHn is the H-projection
onto Vn‘ Since the V-norm is stronger than the H-norm, it follows from
Hypothesis 4.1 that (A-An)'lPEn converges E-strongly to (7\-A)'1 as n —> =,
Now, with An extended to E# as, say, n(PEn—I), Trotter-Kato [Ka2, page 504,

Theorem 2.16] yields the following.

Theorem 4.3. For A0 coercive, let Tn(t) be the (contraction) semigroup gener-
ated on En by An. Then, for each t > 0, Tn(t)PEn converges strongly to T(t),

uniformly in t for t in any bounded interval. VVV

In the general case, when A0 is not coercive, the open-loop generator A is
obtained from the dissipative A by the bounded perturbation (3.5.4), so that
[Gi3, Theorem 6.6] yields the following generalization of Theorem 4.3.

Corollary 4.4. Let Tn(t) be the semigroup generated on En by An. Then, for
each t > 0, Tn(t)PEn converges strongly to T(t), uniformly in t for t in any
bounded interval. VVV
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Theorem 4.5. When A has compact resolvent, (A-An)'lPEn converges in L(E) to

(A-A)~L,

Proof. This follows from (4.2.15) and a standard result that the projection of
a compact linear operator onto a sequence of subspaces converges in norm if the

projections converge strongly to the identity, as do PEn and Pn(A). A

That the adjoint semigroups also converge strongly follows from an arqgument
entirely analogous to the proof of Theorem 4.3. In particular, equations like

(4.2.6)-(4.2.12) are used to show that

P, (}) 0
*y-1 *y~1
(4.2.17) (A-AT) PEn = (A—An) PEn.

0 Pn(A)
In showing this, A" is used as A" was used above. Also, care must be taken to

calculate A; with respect to the E-inner product. The result is

Theorem 4.6. Let Tn(t) be the sequence of semigroups in Corollary 4.4. Then,
for each t > 0, T:(t)PEn converges strongly to T*(t), uniformly in t for t in

any bounded interval. VVV

For the approximation to the actuator influence operator B € L(Rm,E), recall
Bn € L(Rm,En), the operator whose matrix representation is the matrix 8" in

(4.1.6). From (4.1.3), it follows that

(4.2.18) By = Pg B

Since B has finite rank m, Bn and B; converge in norm to B and B*, respectively.

We define the approximating measurement operator Cn € L(En, Rp) to be the

operator whose matrix representation is the matrix c" in (4.1.8) (defined imme-
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diately after (4.1.8)). This means that

(402019) Cn = C'En,

where C is the operator in (3.7.1)-(3.7.3). Since C is a bounded linear opera-

tor with finite rank, CnPEn and C; converge in norm to C and c*, respectively.

4.3 Approximation of the Hub-Beam-Tip-Mass Example

Our approximation of the distributed model of the structure in Section 9 of
Chapter 3 is based on a finite element approximation of the beam that uses cubic
Hermite splines as basis functions [Scl, SF1]. Cubic Hermite splines and their
first derivatives are continuous at the nodes, which are evenly spaced for the
numerical results in Chapter 9. Because the basis vectors ej in Hypothesis 4.1

must be in the space V defined in (3.9.10), we write them as

(4.3.1a) e

1 (1’0!0)’

(4.3.1b) ej = (0, ¢j, ¢j(1)), J=2,3, «cc, n,

where the ¢J's are the cubic spline functions defined over the length of the beam
and n-1 is the number of splines. For n, elements, there are 2n, linearly inde-

pendent splines. The 2ne elastic degrees of freedom are usually taken to be the

displacements and slopes at the nodes, relative to the rigid-body position.

With the rigid-body mode (hub rotation), the total number of degrees of freedom

isn= Zne + 1.

The matrices in (4.1.3) are calculated according to (3.9.3), (3.9.8) and
(3.9.9), with B0 given by (3.9.5). In particular,
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Fas
fi

[a(ei,ej)], D" = cq K,
(4.3.2)
[100...07

il

[ Jpm }

[<e1,M61(1,0,0)>H] = [<e1,(1,0,0)>H0]

Note that the first row and column of Kn are zero. The matrices An and Bn are

given by (4.1.6).

If the measurement is the rigid-body angle 0, then the measurement matrices

0 and

in (4.1.7) are C0

(4.3.3) c

[1t000... 1.
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5. Order Reduction Using Balanced Realizations

5.1 Introduction

Almost any engineering analysis and design task requires a model of a phys-
ical system. The model should be complete enough to describe all of the rele-
vant physical phenomena, but not so complicated that insight is lost or
computational burdens become excessive. The development of an appropriate model
is largely an art which depends on many factors such as the distribution and
type‘of inputs and outputs, the magnitude and frequency content of inputs and
outputs and the structure and properties of the physical components making up
the system. Trial and error and engineering intuition are common ingredients in
the modeling process. Much research has focused on methods for determining what
is essential about a model and what can be disregarded. Most of this work,
generally known as model reduction, applies to systems where the input-output
relationship is linear. Fortunately, the structural systems considered here

fall into that class.

In addition to generating a low order model of the system which is to be
controlled, one may wish to reduce the order of the controller or compensator
which has been synthesized to accomplish the control. If the controller is
linear, one may often use the same methods which are used for reduction of the
plant model. This chapter deals with an approach for model reduction of linear
systems which has been widely used since its introduction in 1980, the method of
balanced realizations [Mol]. In its general form, the approach may be used for
reduction of a plant model or controller. A simplified approximate version may
be used when the equations have a special form corresponding to lightly damped

mechanical systems. The method has intuitive appeal and is easy to apply.
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A number of methods for model reduction have been used in the past with
varying degrees of success. Modal truncation, for example, has been widely used
in structures research. In this approach, the equations of motion are trans-
formed into a set of uncoupled second order equations each of which describes
the dynamics of one mode of vibration. Model reduction is accomplished by
deleting those modes with the highest damped or undamped natural frequencies.
The coupling of each mode to inputs or outputs does not play a role in the trun-
cation procedure. The method is straightforward in its application and has
intuitive appeal. It is an example of a method where reduction is accomplished

by truncation after an appropriate coordinate transformation.

Direct model reduction procedures have been proposed which do not involve

truncation. In these approaches, the analyst decides in advance what order of
reduced model he wants and then uses a numerical optimization procedure to
obtain the reduced model of the given order which minimizes a specified measure
of model accuracy. Methods of this type have recently been developed by Hyland
and Bernstein for application to reduced order controller design [HBl]. Their
approach is called the Maximum Entropy Method, and it involves the simultaneous
solution of two modified Riccati equations and two modified Liapunov equations.
Numerical routines for solving these equations are not yet standard, but the

authors have developed algorithms which appear to be effective.

The introduction of the method of Balanced Realizations in 1980 revitalized
the field of model reduction and led to renewed research. Various modifications
and extensions have been proposed and studied. Enns developed an extension for
frequency weighted balanced realizations [Enl] whereby the analyst could modify
the basic balanced realization procedure to obtain relatively better reduced

model accuracy in certain frequency ranges where model accuracy was critical,
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Another approach to model reduction is the optimal Hankel norm approximation
which is developed in great detail by Glover et al. in [GL1,G11]. Hankel norm
approximations are closely related to approximations based on balanced realiza-
tions, and in fact begin by expressing the system as a balanced realization.
Although a smaller error bound can be established for Hankel norm approxima-
tions, the computations required are substantially more involved than those for
balanced realizations. Another feature of the Hankel norm approximation is that
the reduced model may not be strictly proper even when the original model is.

It is possible to alter the computations to ensure a strictly proper reduced

model, but the required changes increase the error bound.

New techniques for model reduction continue to emerge. Five model reduc-
tion techniques (including balanced realizations, Hankel norm approximations,
an approach by Davis and Skelton, an approach by Yousuff and Skelton and a new
method by Liu and Anderson) have been compared recently by Liu and Anderson
[LA1]. Although some of the methods generally performed better than others,
there was no one method which was always superior. Thus, model reduction is
still an area of active research. The present chapter does not attempt to exa-
mine and compare the many model reduction techniques currently available.
Instead, its scope is limited to the method of balanced realizations. This
approach has been found to compare favorably with other methods, and its com-

putational simplicity makes it attractive for present applications.

5.2 Observability and Controllability; Observability and Controllability
Grammians

Balanced realizations are based on the notions of controllability and
observability of linear systems. Thus we begin by defining these terms and
exploring their meaning. Suppose a physical system is described by the state

space equations:
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(5.2.1) X = Au + Bu

(5.2.2) y = Cx

where

Xx =n x 1 state vector

y=rxl outbut/measurement vector
u=mx 1 input/disturbance vector

A, B and C are constant matrices of appropriate dimension.

To introduce the notion of controllability, one might ask the following
question: "Can one find an input u(t) which drives the system (5.2.1) from an
initial state x(to) = 0 to an arbitrary final state X¢ in finite time tf?" If
the answer to this question is yes, the system is said to be controllable.
Otherwise it is said to be wncontrollable. To determine whether a system is

controllable, first note that if x(to) is zero, then

t
(5.2.3) x(t) = J feAt-T)g y(r)dr
t
0

Introduce a symmetric matrix wc(to,t) defined as:

t T
(5.2.4) W.(tg.t) & j AE-T)gpT A (E-1T) 4o
t
W.(tg.t) is called the controllability grammian. If W.(ty,tc) is nonsingular,

a control input uo(t) which drives x from the origin to X¢ at time tf'is given

by

.
1 A (te-t)

(5.2.5) ug(t) = B'e W (tgst o)X,

This can be verified by substituting (5.2.5) into (5.2.3). Thus, if wc(to,tf)

is nonsingular, the system described by (5.2.1) is controllable. In the event
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that wc(to,tf) is singular, the system is said to be uncontrollable.

The control input given by (5.2.5) is not the only one that will drive x
from the origin to X¢ at time tf. Let ul(t) be an input which drives x from the
origin through an arbitrary trajectory and back to the origin at time tf.
Because of the linearity of (5.2.1), any input which drives x from 0 to X¢ at

time t,. can be written as

f

(5.2.6) u(t) = uo(t) + ul(t)

Among all such inputs, uo(t) is the one which minimizes the integral

t
(5.2.7) E = J f uT(t)u(t)dt

to

E may be regarded as a measure of control effort, and uo(t) interpreted as the
minimum effort input which accomptishes the desired change of state from 0 to

Xge Substituting uo(t) into equation (5.2.7) and evaluating the integral yields

the minimum value of E.

T -1
(5.2.8) Enin = %¢ We (to,tf)xf

Three observations will be useful for subsequent work.

Observation 1

The control effort becomes small (i.e., the system becomes easier to

control) when wc(to,tf) becomes large.
Observation 2

wc(tO’tf) can be expressed as:
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T
BBT eA A

te-t
J f -0 eAA dA

0

(5.2.9) W(tgote) =

To see this, let A = t_. - © in (5.2.4).

f
Observation 3
If a system is controllable, it can be driven from an arbitrary initial

state to an arbitrary final state. This can be seen by starting from an

arbitrary initial state Xgs and expressing the final state as

Attty o A1)
(5.2.10) x(tf) = e Xy + j fe B u(t)dt
to
So,
t
At,.-t £ A(t.-t
(5.2.11) x(t) - e (¢ °)x0 - J e (t¢ g u(t)dt
t
0

This shows that the control which drives the system from Xg to x(tf) is the same

as that which drives the system from the origin to the final state X¢ where

A(t -t.)
f 0 X

(5.2.12) Xg = x(tf) -e 0

The concept of controllability has several things in common with that of
observability, but it has some differences as well. Assume A, B and C in Egs.
(5.2.1, 5.2.2) are known, and that the input u(t) and the output y(t) are known
on to <ts tf. Then ask the question, "Can one determine the initial state X0
from this information?" If the answer to this question is yes, the system is
said to be observable. If the answer is no, the system is wnobservable.
Observability also implies that knowledge of the input and output over any

interval ty <t < t. is sufficient to determine x(tf).
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To develop the idea of observability, let

t
x(t) - J At-T)g u(t)dt

(5.2.13) x(t) 2
to
(5.2.14) y(t) 4 ¢ x(t)
Then,
b A(t-7)
(5.2.15) y(t) = y(t) - I Ce B u(t)dr
t
0

Since both terms on the right side of (5.2.15) are known, y(t) may be regarded

as known also. Now,

% =%-Bu-A It Alt-T)g u(t)dt
to
= AX + Bu - Bu - A Jt eAt-T)p u(t)drt
to
= Al{x - Jt Alt-T)g u(t)dr
to

(5.2.16) = AX
and
(5.2.17) X(tg) = x(t,)

Hence, the plant equations may be written in terms of x and y as

(5.2.18) A%, X(tg) = x(t)

(5.2.19) y = Cx
The observability of (5.2.18) and (5.2.19) is the same as that of (5.2.13) and

(5.2.14) since the ability to determine i(to) given ¥(t) on [tO’t1] implies and
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is implied by the ability to determine x(to) given y(t) on [tO’tI] and u(t) on
[to,tl]. In the subsequent development we will work with (5.2.18) and (5.2.19)

because of their simpler form.

From (5.2.18) and (5.2.19), y(t) may be written as

A(t-to)
(5.2.20) j(t) =Ce i(to) tstst,
Define the observability Grammian as
At AT(t—to) o A(T-ty)
(5.2.21) wo(to,t) = J e C'Ce dt
to
AT(t-t,)
Multiply (5.2.20) by e C and integrate from t0 to tf.
b aT(e-ty) | boAT(-ty) ; Alt-tg)
(5.2.22) I e c'y(t)dt = I e C'Ce dt i(to)
to %

Ho(tgrte) R(t)
If wo(to,tf) is nonsingular, and §(t) is known on [to,tf], then (5.2.22) can be
solved for i(to).

t, T
f A (t-t
(5.2.23) %(ty) = w;l(to,tf) I e (t-tg) C

%

T5(1)dv

Hence, the system (5.2.18), (5.2.19) is observable if wo(tO’tf) is nonsingular.
If wo(to,tf) is singular, the system is unobservable.

For interpretation of results in the sequel, it will be useful to introduce
a scalar measure of the output y(t) analogous to the scalar measure of the input

given in Eq. (5.2.7). Define a response function R as
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t
f
(5.2.24) R 2 j 5T (0§ (1)dr

%

Substituting from (5.2.20) and (5.2.21),

t ty AT
f f A(t-t A(t-t
I yT(r) y(t) dt = iT(to) I e (x 0) c’c e (x 0) dt i(to)

ty t

(5.2.25) RT(tg) W,(tg,te)R(t,)

Thus, wo(to,tf) provides a measure of the size of the response corresponding to

an initial condition i(to).

If the A matrix in Eq. (5.2.1) is stable (i.e., all of the eigenvalues of A
are in the left half plane), then wc(to,tf) and wo(tO’tf) remain finite as

t, » =. Define

f

® AT, T ATt
(5.2.26) wc = wc(o,e) = I e BB'e dt

0

= ATt 1. At
(5.2.27) wO = wo(o,a) = I e C'Ce" " dt

0

It is not difficult to show that wc and wo satisfy the Liapunov Equations:

(5.2.28) AW, +W_ AT + 88"

0

(5.2.29) Wy A+ AW +CC =

i
o

Since well documented numerical procedures are available for solving these
equations [BS1], finding wc and wo for the case where tf » = is most easily
accomplished by sotving (5.2.28) and (5.2.29) rather than attempting direct

evaluation of the integrals given in Eqs. (5.2.9) and (5.2.21). If the given A
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matrix is not comptetely stable, then A must be partitioned into a stable part
and an unstabie part. Egs. (5.2.28) and (5.2.29) may be used to find the
controllability and observability grammians associated with the stable part of

A in the infinite time case.

5.3 Balanced Realizations

It is always possible to express the system equations (5.2.1) and (5.2.2)
in a different but equivalent form through the use of a coordinate transfor-

mation:

(5.3.1) X =T x

where T is a nonsingular matrix. This transformation leads to

(5.3.2) %= AX + B u

(5.3.3) y = CX

where

(5.3.4) A=1!lat, B=71ls, c-=cT

There are many objectives one might have in performing such a transformation,
e.g., to put the transformed system into diagonal or block diagonal form, to put
it in controllability canonical form [Kal, pp. 49-55], etc. When the trans-
formed model is to be used for control system design, the Balanced

Realization of Moore [Mol] is appealing because expressing equations in this
form allows one to compare the relative controllability and observability of
individual states. This information is useful in deciding which states are most

important to retain in a reduced model.

Suppose the original system matrix A is stable. (If this is not the case,

then A must be partitioned into a stable and unstable part as noted above. The
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discussion to follow applies to the stable part.) To cast the equations into
balanced form, we seek a transformation matrix T such that wc and wo in

Eqs. (5.2.26) and (5.2.27) are diagonal and equal. Suppose wc and w0 are found
by solving the Liapunov Equations (5.2.28) and (5.2.29) for the untransformed

system. WC and Wo for the transformed system then become

o . |
(5.3.5) Ne=TW T W= TWT

The transformation matrix T is found by considering the eigenvalue problem
-1 _
Assuming distinct eigenvalues, the eigenvectors satisfy

T,~1, _ A. Ty o . .
W Y. = 0; Yjoni =0 i#]

(5.3.7) VNV

Form a square matrix, I', from the eigenvectors of (5.3.6). The matrix I' will

satisfy

wcr'T = diagonal

I

(5.3.8) I'Wr = diagonal, 7!

We have reached part of our goal by finding a matrix which diagonalizes both
wc and wo. However, the columns of I' are not yet uniquely defined because we
have not specified a normalization. This remaining degree of freedom is used to

make wC and wo equal. Normalize the columns of I such that

) % -
(5.3.9) YiWYs = () i=1,2,..0,n
Then,
A 0o 1%
(5.3.10) W =W = T.
c 0 0 An

The Ai's are called Hankel singular values. Thus, when the original system is
transformed using T = I', observability and controllability grammians satisfy

(5.3.10). The transformed system is said to be a balanced realization.
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5.4 Model Reduction Using Balanced Realizations

We now consider the interpretation of Wc and Wo and examine how these
matrices can be used to motivate a model reduction procedure. For a balanced
realization, Wc and Wo are diagonal and satisfy (5.3.10). For this situation,
the control effort function E and the response function R introduced in section

5.2 become

(5.4.1) E = JQ uTu dt = }f:

%2 - n
fi . _ T _ 2
-A.i_ ; R = J yydts= Z X(h}\,l
0 i=1 0

i=1
If Ai > Aj, we can argue that less effort is required to move from the ori-

gin to x,

j than to move from the origin to xfj. Thus, X3 is more strongly

affected by u than xfj, ie€a, Xes is more controllable. Similarly, we can argue
that an initial condition on X4 results in a larger contribution to the
response than an initial condition on XOj’ i.e., X034 is more observable than
XOJ‘ Taking these observations together, we see that a state X; with a large

Ai is more controllable and observablie than a state xj with a small Aj. If
model truncation is contemplated, it is intuitively appealing to retain highly
controllabie and observable states, i.e., states with large A's. Thus states
corresponding to small values of A are candidates for truncation. If there is
no gap separating the states with large A's from those with small A's, it may
not be clear where the division should occur between the retained states and the
discarded states. This issue may be resolved by considering the convergence of

control and estimator gains. See Chapters 6-9 and [MG1].

5.5 Asymptotic Expansions for the Balanced Singular Values of Lightly Damped
Mechanical Systems

As explained in Section 4.2, calculating wc and wo involves the solution of

Liapunov equations. When Eqs. (5.2.1) and (5.2.2) describe a stable, lightly
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damped mechanical system, the approximate solution of these Liapunov Equations
may be accomplished using perturbation methods. This section concerns the
development of first and second order perturbation solutions for wc, wo and

their balanced singular values.

The mechanical systems addressed in this section are described by second

order equations of the form:

(5.5.1) Mg+eDq+Kaqs=bu

(5.5.2) y = cpq +c,q

M, D and K are symmetric and positive definite n x n matrices with M being the
mass matrix, D the damping matrix and K the stiffness matrix. (At the expense
of some additional complexity, the assumptions that D and K are symmetric could
be relaxed in the development to follow. Ref. [BM1] addresses the case where a
skew symmetric gyroscopic matrix G is added to D and a skew symmetric cir-
culatory matrix F is added to K. The present development is restricted to the
case where G and F are absent.) The matrix b is the input distribution matrix,
and u is the input vector representing either the control or disturbance input.
The output vector is y, and cp and cv are the position and velocity distribution
matrices, respectively. The scalar € is a small parameter reflecting the 1light

damping. By an appropriate coordinate transformation, these equations can be

cast into a more convenient modal form:

(5.5.3) Nn+ehf+0%n=8u

(5.5.4) y = Cpn + Cvn
In Eqs. (5.5.3) and (5.5.4), Q is a diagonal matrix of modal frequencies. The

modal frequencies are assumed to be distinct. The damping matrix, A, is sym-
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metric and positive definite, but it is not presumed to be diagonal. The matri-
ces B, Cp and Cv are the input and output distribution matrices for the
normalized system. For the development to follow, we wish to express Egs.

(5.5.3) and (5.5.4) in state space form. Let

(5.5.5) X

u
—~——
e 3
[
>
n
e —
]
~ o
N
]
m
> —
| S—
(o]
n
r—————
o
| SESE—

B

O
n

[c, ¢,]

Then the state space version of (5.5.3) and (5.5.4) becomes:

(5.5.6) X = AX + Bu

(5.5.7) y = Cx

Consider first the solution of the Liapunov Equation (5.2.28) for wc. Because
of the special structure of A and B, it is useful to express wc in the par-

titioned form:

[ W

11 W
- 12
(5.5.8) W, =
W
T 22
| W12 e

The scalar € is introduced in Eq. (5.5.8) for convenience in the subsequent
development. Substitution of (5.5.5) and (5.5.8) into (5.2.28) leads to three

matrix equations:

(5.5.9) WDy + Wy = 0
2 2
(5.5.10) Wyy = Wy 07 = €2 W
(5.5.11) -(sz12 + w{znz) - (8 Wy + Wyoh) + BBT = 0

62



These equations lead to some interesting observations. First we see that

wlz is skew symmetric. This results from the fact that the state vector x has

the special form x = [nT ﬁT]T, i.e., the bottom half of the state vector is the

derivative of the top haif.

A second observation is that Eqs. (5.5.9-5.5.11) contain €2 but not e.

This means that wll, w12 are functions of e2 and expansions of these matrices

2

should be in terms of €~ and not e.

With these observations in mind, we assume an expansion for wij in the

form:

(5.5.12) W.. = u,.+ ezvi. + e4w.. + eee

1 1 J 1

Substituting this expansion into Eqs. (5.5.9-5.5.11) and setting coefficients of

2

1ike powers of €~ to zero leads to a set of equations which can be solved

sequentially.

0

€ terms:
(5.5.13) Ujp + Uyp = 0
2

(5.5.14) Upy - ulln =0

2 T
(5.5.15) ~(0%uy, + up %) - (Buy, + uypd) + 88T = 0
€2 terms:
(5.5.16) Vig * Vqp = 0
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(5.5.17) Voo - V11Q = ule

(5.5.18) ~(0Pvy, + vIznz) - (v, + Vpph) = 0
e4 terms:

(5.5.19) Wi, Wy, = 0

(5.5.20) Moy = W00 4 W = 0

(5.5.21) -(sz12 + WIZQZ) - (Aw22 + WZZA) =0
etc.

th 2

Define w? as the i

ij elements of BBT, A and Upgs respectively. Then, using Eqs. (5.5.13 - 5.5.15)

diagonal element of Q°, and (BBT)ij’ and (ukl)ij as the

Aij

and the assumption that the modal frequencies are distinct, the elements of

u11 become:

(5.5.22) (up)gq = (88T)4 /(80 5 (upp)yy =0 for i #

(u11 is diagonal.) From (5.5.22) and (5.5.14), Uss becomes:

2

(5.5.23) 0

Y22 = U1g
(u22 is also diagonal.)
With the elements of u22 known, introduce a matrix P defined as:

A T
(5.5.24) PE88 - (Buy, + uyh)

(Note that PH = 0.) The elements of ) then become
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(5.5.25) ()45 - Pij(w? - w§) ; Pt
(5.5.26) ("12)11 =0

Next introduce matrices S and T based on the known solution for u12.

A
(5.5.27) S=u

n
—
N

"

1
~
>
:

A
(5.5.28) T

Then, from (5.5.16 - 5.5.18), the elements of Vi1 become

-1
Tig - 2 }:: (83395 0vyyq) - 2:: (83395 (v11)q)
(5.5.30) (v,,).. = k=1 k=1+1
1171414 2
2449

Using this expression together with (5.5.17) we obtain

_ 2
(5.5.31) Vogy = V11Q + ule

The expansion will not be carried beyond this point because the expressions
become increasingly unwieldy. However, the expressions obtained so far permit
one to write out the first three terms in the expansion for wc. To see this,

recall that

r

y .
11 1 2 2
= W E[u11 +etvy, + vee) [u12 + eV, + cee]
(5.5.32) W, = -
W T 2. T 1 2
| WIZ §2 [u12 + eV, + eee] E[UZZ + €V, ¥ eoo]
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| 0 0 2y Vvp O
=E + T +€ +ooo
0 u22 u12 0 0 v22

The expressions for Upqs Ugps Uppo V11 and V22 are given in Eqs. (5.5.22)-
(5.5.31).

For 1ightly damped structures (small e€), the formulas given above provide
an efficient way to compute an approximation of the controllability grammian.
Using a similar approach, it is possible to develop approximate formulas for the
observability grammian (see Appendix A). The resulting expressions for wc and
wo may be used to determine the balanced realization. Examination of (5.5.32)
and the corresponding formula for the observability grammian reveals that as €
gets smaller, causing the first terms in the expansions to dominate, wc and
Wy tend to become diagonal. Thus, the product (wc wo) tends to become diagonal,
and the diagonal elements approximate the squares of the balanced singular
values. Using the results of this chapter and Appendix A, one can write these

approximate expressions as

[1th balanced singular value]

T T 2. T %
(BB )y [(CCH) 44 + 0i(CC D451
R
4 wi AH

m e

(5.5.33)

Thus when ¢ is small, the modal coordinates themselves constitute a balanced

realization, and the ith

th

balanced singular value is a measure of the importance
of the i* mode of the model. A similar result was obtained by Gregory [Grl]

using a different approach.
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Subsequent chapters will address the question of how many modes and which
modes must be included in a structural model in order for the compensator to
converge and stabilize the nominal plant. The procedure for doing this involves
beginning with a model of finite size and gradually adding modes to the model
untit the compensator converges. The speed of convergence and the ultimate size
of the required model are dependent in part on how good the analyst is in
selecting the modes to be added. The approximate formulas given above allow one
to identify which modes are likely to be the most important (the highly
controllable and observable ones with large balanced singular values) so they can
be added to the model first. This procedure helps keep the size of the model

from getting too large.

5.6 Internal Balancing in Infinite Dimensions

The idea of internal balancing in finite dimensions can be extended to
infinite dimensions. This extension will yield balanced states for distributed
systems, and these states will be vectors in the abstract state spaces (Hilbert

spaces) in which the distributed models are formulated.

Consider the control system

(5.6.1) X=AX+Bu, y=Cx

where x is in a Hilbert space H, A generates an exponentially stable semigroup
on H, and B and C are bounded linear operators of finite rank. In applications,
B and C have finite rank because the number of actuators and the number of sen-
sors are finite. The controllability and observability grammian operators

wc and wo are the solutions to the operator equations
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* * * Xn
(5.6.2) A Wc + NCA +BB" =0 and A WO + NOA +CC=0.

Since B and C have finite rank, both wc and wo are compact and selfadjoint. It

can be shown, then, that the eigenvalue probiem

has a countable number of solutions, that the singular values Si approach zero
as i increases, and that the eigenvectors z, are mutually orthogonal with
respect to both wc and wo and complete in H. Note that these properties are
quite similar to those of the eigenvalue problem for the natural modes of a
flexible structure. The numerical problem of computing the balanced states of
an infinite dimensional control system is also analogous to that of computing

the natural models of a structure.

The results alluded to here could be developed more fully and explored with
respect to developing efficient numerical methods for computing the balanced
states of the distributed system. The approximation theory for computing
balanced states will be especially important. To the authors' knowledge, work

has not been carried out on this topic.
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6. The Infinite Dimensional LQG Problem

Section 6.1 of this chapter presents some preliminary definitions and
results for the optimal linear-quadratic regulator problem on an arbitrary real
Hilbert space E. Theée results are generic in the sense that £ is not
necessarily the Energy space of Chapters 3 and 4, and the operators A, B, etc.,
do not necessarily represent a flexible structure. In subsequent chapters, such
generic results facilitate derivation of approximation theory for the infinite
dimensional state estimator from the analogous approximation theory for the

control problem.

Section 6.2 discusses an infinite dimensional state estimator for the
generic plant in Section 6.1, an infinite dimensional compensator and the corre-
sponding closed-loop system. The purpose of Section 6.2 is to establish certain
properties of the estimator, compensator and closed-loop system that do not
depend on the control and estimator gains being optimal. Therefore, the gains
in Section 6.2 are allowed to be arbitrary bounded linear operators between
appropriate spaces, and neither the estimator nor the compensator is necessarily

optimal.

Section 6.3 defines the LQG-optimal infinite dimensional estimator and com-
pensator, still for a generic plant. Finally, Section 6.4 gives some important
implications of the general results for the case where the plant is the infinite

dimensional flexible structure model defined in Chapter 3.

Most of the results in this chapter are analogous to results for the finite
dimensional LQG optimal control problem, with infinite dimensional operators
corresponding to finite dimensional matrices. In particular, instead of the

control and estimator gain matrices in finite dimensions, here we have gain
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operators. The functional gains in Section 6.4 can be thought of as a generali-
zation of the transposes of finite dimensional gain matrices, although the rela-
tionship between functional gains and infinite dimensional gain operators is not

s0 simple,

6.1 The Generic Optimal Regulator Problem

Let a linear operator A generate a Co-semigroup T(t) on a real Hilbert space
E, and suppose that B ¢ L(Rm,E), that Q € L(E) is nonnegative and selfadjoint
and that R is a positive definite, symmetric real m x m matrix. The optimal
control problem on E is to choose the control function u € L2(0, s Rm) to mini-

mize the performance index

(6.1.1) J(z(0),u) = Ia (<Q z(t), z(t)>E + u(t)T R u(t)) dt
0

where the state z(t) satisfies

t
(6.1.2) z(t) = T(t) z(0) + I T(t-s)Bu(s) ds, t 20.
0
Definition 6.1. A function u € L2(0, “; Rm) is an admissible control for the
initial state z, or simply an admissible control for z, if J(z,u) is finite;
i.e., if the state z(t) corresponding to the control u(t) and the initial con-

dition z(0) = z is in L2(0, =3 E).

Definition 6.2. Let the operators A, B, Q and R be as defined above. An opera-
tor T in L(E) is a solution of the Riccati algebraic equation if Il maps the

domain of A into the domain of A* and satisfies the Riccati algebraic equation

1

(6.1.3) AT +0A-OIBR'B*II +Q=0. VW
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Theorem 6.3 (Theorems 4.6 and 4.11 of [Gi4]). There exists a nonnegative
selfadjoint solution of the Riccati algebraic equation if and only if, for each
z € E, there is an admissible control for the initial state z. If Il is the
minimal nonnegative selfadjoint solution of (6.1.3), then the unique control

u(+) that minimizes J(z,u) and the corresponding optimal trajectory z(-) are

given by

(6.1.4) u(t) = - R7IB*M 2(t)
and

(6.1.5) 2(t) = S(t) z,

where S(t) is the semigroup generated by (A - BR'IB*H). Also,

(6.1.6) J(z,u) = min J(z,v) =<1 z, 2>

v E

If, for each initial state and admissible control,

(6.1.7) lim | z(t)| =0,

there exists at most one nonnegative selfadjoint soiution of (6.1.3). If Q is
coercive, (6.1.7) holds for each initial state and admissiblie control and S(t)

is uniformly exponentially stable. VVV
We will refer to T(t) as the open-loop semigroup and to S(t) as the closed-

loop semigroup.

6.2 An Infinite Dimensional Estimator and the Corresponding Compensator and
Closed-Loop System

The differential equation corresponding to (6.1.2) is, of course,

(6.2.1) z(t) = Az(t) + Bu(t), t > 0.
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While (6.1.2) is valid for any u € L2(0, L Rm), the sense in which (6.2.1)
holds -- when it holds -- depends on how smooth u is. Thus it is more precise
to write (6.1.2) for arbitrary L2 controls, but continuing to write (6.1.2) in
this section, along with the similar integral equations for the estimator and
closed-loop system, would be too cumbersome. Therefore, we will write the dif-
ferential equations with the understanding that when necessary they can be

interpreted as representing the appropriate integral equations.
We assume that we have a p-dimensional measurement vector y(t) given by

(6.2.2) y(t) = Cou(t) + Cz(t),

where Coe L(Rm,Rp) and C € L(E,Rp) for some positive integer p.

Definition 6.4. For any F € L(RP,E), the system

(6.2.3) 3(t) = AZ(t) + Bu(t) + F[y(t) - Cou(t) - C2(t)1, t>o0,

will be called an estimator, or observer, for the system (6.2.1)-(6.2.2). Let
S(t) be the semigroup generated by A-FC. The observer in (6.2.3) is strongly
(uniformly exponentially) stable if §(t) is strongly (uniformly exponentially)

stable. VVV
To justify this definition, we write
(6.2.4) e(t) = z(t) - z(t)
and, with (6.2.1)-(6.2.3), obtain
(6.2.5) e(t) = 5(t) e(0), t > 0.

Of course, an estimator is necessary because the full state z(t) will not be
available for direct feedback, and the feedback control must be based on an

estimate such as Z(t). When the desired control law has the form
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(6.2.6) u(t) = Fz(t)

for some F € L(E,Rm), the observer in (6.2.3) can be used to construct z(t) from
the measurement in (6.2.2) and then the control law in (6.2.6) can be applied to

Z(t). The control applied to the system is then
(6.2.7) u(t) = Fz(t),
and the resulting closed-l1oop system satisfies

6.2.8 t 0
(6.2.8) ;gt;) - s__(t) (ggog) t 20,

where S__(t) is the semigroup generated on E x E by the operator

[ A -BF
(6.2.9) A =

) . ] ,  D(A_) = D(A) x D(A).
FC  [A-BF-FC]

With the estimator error e(t) defined by (6.2.4), it is easy to show that
(6.2.8) is equivalent to (6.2.5) and

(6.2.10) z(t) = (A-BF) z(t) + BF e(t), t >0,

where (A-BF) generates a semigroup S(t) on E. Also, it is easy to prove the

foltowing.

Theorem 6.5. Suppose that there exist positive constants Ml’ M2’ a, and a, such

that

1t —azt
(6.2.11) [S(t)]| < M, e , IS(t)] < Me , t>0.

Then, for each real aq < min {al, az}, there exists a constant M3 such that
-a3t

(6.2.12) IS .(t)] < Mse , t 2 0.
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Also,

(6.2.13) o(A__) = o(A-BF) U o(A-FC) ,
where o(A__) is the spectrum of A__.

The observer in (6.2.3) and the control law in (6.2.7) constitute a compen-

sator for the control system in (6.2.1) and (6.2.2). The transfer function of

this compensator is

(6.2.14) ®(s) = —-F(sI - |:A-BF+?(COF-C)])'1 F,

which is an m x p matrix function of the complex variable s. When E has infi-
nite dimension, the compensator transfer function is irrational, except in
degenerate, usually unimportant cases. Figure 6.1 shows the block diagram of

the closed-loop system produced by applying this compensator to the plant in

(6.2.1) and (6.2.2).
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Figure 6.1 Closed-loop System with Infinite Dimensional Plant
and Infinite Dimensional Compensator

The foregoing definitions of this section and Theorem 6.5 are straightfor-
ward generalizations to infinite dimensions of observer-controller results in

finite dimensions. Balas [Ba2, Ba3] and Schumacher [Sc2] have used similar

extensions.

6.3 The Optimal Infinite Dimensional Estimator, Compensator and Closed-Loop
System

Now suppose that F is chosen as

(6.3.1) F=tic*r!

where 1 € L(E) is the minimal nonnegative selfadjoint solution to the Riccati
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equation

(6.3.2) AT +T0A*-0C*R

with 6 € L(E)_nonnegative and selfadjoint and R a positive definite symmetric

p x p matrix. Theorem 6.3 (with A, B, Q, R, I and S(t) replaced by A*, C*, Q,
ﬁ, il and §*(t)) gives sufficient conditions for i to exist and for the semigroup
§*(t) -- and equivalently its adjoint, the §(t) generated by A - ﬁC*ﬁ'IC -~ to

be uniformly exponentially stable.

Definition 6.6. When the control gain operator is

(6.3.3) F=R™'B*m,

with 1T the solution to the Riccati equation (6.1.3), and the estimator gain
operator is given by (6.3.1) and (6.3.2), we call the compensator and the
closed-loop system in Figure 6.1 the optimal infinite dimensional compensator

and optimal closed-loop system, respectively.

The infinite dimensional estimator defined by (6.2.3), (6.3.1) and (6.3.2)
is the optimal estimator for the stochastic version of (6.2.1) and (6.2.2) when
(6.2.1) is disturbed by a stationary gaussian white noise process with zero mean
and covariance operator 6 and the measurement in (6.2.2) is contaminated by
similar noise with covariance R. For infinite dimensiona) stochastic estimation
and control, see [Bal, CP2]. When the state weighting operator Q in (6.1.1) is
trace class, the optimal infinite dimensional compensator minimizes the time-
average of the expected steady-state value of the integrand in (6.1.1).

Existing theory for stochastic control of infinite dimensional systems requires
trace-class 6, but we have a well defined compensator for any bounded non-
negative selfadjoint 6 and Q, as long as the solutions to the Riccati equations

exist. As the next chapter shows (without assuming trace-class 6), the infi-
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nite dimensional compensator is the limit of a sequence of finite dimensional
compensators, each of which can be interpreted as an optimal LQG compensator for
a finite dimensional model of the structure. Therefore, we do not require
trace-class 6 in our definition of the optimal compensator, even though this

compensator solves a precise optimization problem only when 6 is trace class.

This text is concerned primarily with how the finite dimensional compen-
sators in Chapter 7 converge to the infinite dimensional compensator in this
chapter, and the analysis of this convergence requires only the theory of infi-
nite dimensional Riccati equations for deterministic optimal control problems
and the corresponding approximation theory. While the stochastic interpretation
of the infinite dimensional compensator and, in Section 4 of Chapter 7, of the
finite dimensional estimators should be motivational, nothing in the rest of the
paper depends on a stochastic formulation. We assume that the operators Q, R, 6
and R are determined by some design criteria, either stochastic or deter-
ministic. In many engineering applications, deterministic criteria such as the
stability margin and robustness of the closed-loop system [B11, TS1], rather
than a stochastic performance index and an assumed noise model, govern the

choice of Q, R, 6 and ﬁ.

6.4 Application to Optimal Control of Flexible Structures

For the rest of this chapter, AO’ Al’ A, T(t), B,, B, Cl’ C2 and C are the

0’
operators defined in Chapter 3, and E = V x H is the energy space defined there.

The next theorem concerns a typical problem in control of aerospace struc-
tures: A1l elastic components have some structural damping; no damping is asso-

ciated with the rigid-body modes but all rigid-body modes are controllable.
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(This is the case with the structure in Section 9 of Chapter 3, for example.)
For all rigid-body modes to be controllable, an actuator is required for each

rigid-body mode.

. * ~ ~ -
Theorem 6.7. 1) Suppose that A1 = BOB0 and that A0 = A0 + A1 and d0 = d0 + A1

are H-coercive, so that there exist positive constants p, Y and B8 such that, for

all v eV,
(6.4.1) vl , 2 olv]

v2 12
(6.4.2) dg(v,v) 2 Y|V|H2
(6.4.3) dglv,v) < BlvlV2
and
(6.4.4) max{|Byl,[Ql.IRI} < B.

(The V-continuity of d, implies (6.4.3).) Then (6.1.3) has a minimal non-

0
negative selfadjoint solution II.

ii) Suppose also that

(6.4.5) <Qz, 2>p 2 plzlé.

Then the optimal closed-loop semigroup satisfies
t

-d
(6.4.6) IS(t)] <M, e 27 | t >0,

where M2 and a2 are positive constants depending on p, Y and 8 only.

Proof. See [GA2].
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Now we will consider the structure of the optimal control law in more

detail. Since I € L(E) and E = V x H, we can write

0 1
(6.4.7) pa|
oL

Ho e L(V), Hl € L(H,V), H2 € L(H), and II0 and HZ are nonnegative and self-

adjoint. With z = (x,x), as in Chapter 3, (6.1.4) becomes
(6.4.8) u(t) = - R™IB3[N} x(t) + I, x(t)].

Since B0 € L(Rm,H), we must have vectors bi € H, 1 £ 1 <m, such that

m
(6.4.9) Byu = }:: b, u;
i=1
for
_ T m
(6.4.10) us= [u1 Uy eee um] € R,
Also, for h € H,
x T
(6.4.11) Bgh = [<b1,h>H <bysh>y e <bm,h>H] .

Since Mix(t) and I x(t) are elements of H, we see from (6.4.8) and (6.4.11)
1 2

that the components of the optimal control have the feedback form
(6.4.12) ui(t) = - <fi,X(t)>v - <gi,X(t)>H, i = 1, es ey m,

where fi € V and 9; € H are given by
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-
n

m
(6.4.13a) 1 }:: (R'l)ijnlbj,
51

_ -1 .
(6.4.13b) g, (R )1jn2bj, i=1,2,00.,m

1

j=1

We call fi and 9; functional control gains.

Since the measurement operator C in (6.2.2) now has the form discussed in

Section 7 of Chapter 3, the estimator gain operator F has the form

(6.4.14) Fy = i (55 95) v,
i=1

for y = [_y1 yé . yp]T € Rp, where the functional estimator gains ?1 and §1 are

elements of V and H, respectively.

For the optimal estimator gains, we can partition il as

| B
(604-15) II =
- -
L m

and use (6.3.1) and (3.7.4) to get
- ~-1 a ~
(6.4.16a) fy = }?: (R )13(“0C1j + “1°2j)’
3=

a _ | -~ N .
(6.4.16b) g, = Ef: (R )13(“6°1j + 1 2J.), P2 1,2,000,p
j=1

Now we partition 6 as

80



(6.4.17) Q= .

q 9
In the optimal control problem, we almost always have a nonzero 00 because this
operator penalizes the generalized displacement. For the results in this text,
60 can be nonzero in the observer problem, and, as in the control problem, some
of the strongest convergence results for finite dimensional approximations can
be proved only for coercive 6. However, if the observer is to be thought of as

an optimal filter, then 6 should be the covariance operator of the noise that

disturbs (3.1.1). In this case, 60 = 0 and 61 = 0.
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7. Approximation for the LQG Problem

7.1 Preliminaries

The approximating finite dimensional LQG problems to be solved numerically
are defined for the nth approximating control system in (4.1.2) - (4.1.8). 1In
approximating the solutions to the infinite dimensional LQR problem and the
infinite dimensional state estimation problem, we will need the following

2n x 2n grammian matrices:

=n N

(7.1.1) K' = [<ei, ej>V] = K+ [<A; e, ej>H]’
~n

(7.1.2) W [ K °n ]
0 M

(Recall the stiffness matrix K" and the mass matrix M" from (4.1.3).) The
superscript n on any matrix indicates the order of approximation, not a power of

the matrix; the matrix W'" will be the inverse of w”.

To construct the finite dimensional compensators, we must assume the
following:
Hypothesis 7.1. There exist two sequences of symmetric, nonnegative 2n x 2n

matrices Q" and Q", n =1, 2, ... VUV

~
-~

The matrices On and 6" will be used in the Riccati matrix equations to be
solved numerically for finite dimensional control and estimator gains. Of
course, we want these matrices to be related to approximations of the operators
Q and 6, respectively, but we will postpone hypotheses related to operator con-
vergence until the next chapter. For now we just will give the most common way

. N *n
of defining Q and Q .
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The matrix 5" most often is defined to be the nonnegative, symmetric 2n x 2n

matrix
~n ~n
1% 9
(7.1.3) Q =
~nT xn
G 9

whose n x n blocks are

qg = [<ey, Q eyl
(7.1.4) Q) = [<ejs 0 eyl

~N

Q, = [<e;, Qp ej>H] .

where 00, 01 and 02 are the operators in Chapter 6, Section 4.

The most common way of defining the matrix 6" is similar to that for 5",
but there is an important difference. If the operator 6 in Section 6.3 is par-
titioned as in (6.4.16) and a symmetric matrix 6" is defined as in (7.1.4) with

QO’ 01 and 02 replaced by 60, 61 and 62, then
(7.1.5) Q" =W Q" W,

Thus defined, the matrices 6" and 6" are related to approximations of the
operators Q and Q in the following way. We define Q_ = Pe Ql¢ and Q = Pe 6|E
n n En n n En
where PEn is the projection in (4.2.16), and we define Q" and on to be the

matrix representations of Qn and 6n, respectively. It follows, then, that

(7.1.6) g" = w" Q"
and
(7.1.7) Q" = Q" w ",

-~

It is interesting to consider the case Q = Q = I. The state weighting

operator Q = I (i.e., 00 =1, Q1 =0, 02 = I) in the infinite dimensional
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control problem penalizes the sum of the total energy in the structure and the
squares of any rigid-body displacements. The operator 6 = I in the infinite
dimensional estimator problem corresponds to no physical noise; nonetheless, our
approximation theory allows 6 = I, and we often have found that a coercive 6
produces desirable stability properties in the estimator.

~

For @ =Q =1, (7.1.6) and (7.1.7) yield 0" = W" and Q" = W™™. This may

appear dubious. Indeed, (7.1.6) and (7.1.7) may appear to violate the normal
duality between the LQG control and estimator problems. However, examination

of the performance index in (7.2.1) for the finite dimensional control problems
and the stochastic interpretation in Section 7.6 of the finite dimensional esti-
mators should demonstrate that (7.1.6) and (7.1.7) are natural from both the

infinite dimensional and the finite dimensional perspectives.

While the 5" and 6" in (7.1.3)-(7.1.7) often are used in the finite dimen-

sional LQG problems, the rest of this chapter assumes only Hypothesis 7.1.

7.2 Approximation of the Optimal Control Law
7.2.1 The Finite Dimensional LQR Problems

The nth optimal LQR problem is: given n(0) € RZ" choose u ¢ L2(0,~;Rm) to
minimize
(7.2.1) 3(n(0),0) = [ In(&)TQn(t) + u(t) R u(e) Jat

0

where n(t) = [E(t)T,E(t)T]T satisfies (4.1.4). We assume:

Hypothesis 7.2. For each n 2 1 and n(0) € R2n’ there exists an admissible

control (Definition 6.1) for (4.1.4) and (7.2.1).
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A sufficient condition for Hypothesis 7.2 is that, for each n, the system (A",
B") be stabilizable.

By Theorem 6.1 (or standard finite dimensional optimal control theory), the

optimail control un(t) has the feedback form

(7.2.2) u (t) = -F" n(t)
where
(7.2.3) S UL 4

and " is the minimal nonnegative, symmetric solution to the Riccati matrix

equation

-1 .nT &

(7.2.4) UL U L U LU S UL U, LI

7.2.2 Approximating Functional Control Gains
Now we define the 2n x m matrix

(7.2.5) "= w"F

and the following elements of Vn:

n
(7.2.6) fin = }E: 655 €55 2:: Gy e s

j=1 j=n+l1

i = 1, 2, evsey m.

Then, in view of (4.1.1) and (4.1.5), the ith component of the nth control 1aw
in (7.2.2) is
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[ith

(7.2.7) ug,(t) = - column of G"] W'n(t)

= - }f: }f: Gj1<ej’ ek>v &k(t)

j=1 k=1
2n 2n
) )
j=n+l k=n+l

1850 &y ék(t)

= - <f_in, Xn(t)>H - <gin, xn(t)>v, i = 1, 2, eo ey M.

We call fin and 9in approximating functional control gains. In Chapter 8, we
will see how fin and 9in approximate the functional control gains fi and gi in

(6.4.12).

7.3 Approximation of the Infinite Dimensional Estimator

7.3.1 The Finite Dimensional Estimators

The finite dimensional state estimator that is used on-line to approximate
the optimal infinite dimensional estimator in Chapter 6 is
u - c")

(7.3.1) n=A"n+B"u+F (y- Cq

2n

where ﬁ(t) e R°" and c" is the matrix in Section 1 of Chapter 4. The 2" x p gain

matrix F" is

(7.3.2) LU U UL
where fi" is the minimai nonnegative, symmetric solution to
(7.3.3) AR LA AT S TR MG =0

and 6" is a nonnegative, symmetric 2n x 2n matrix, as in Section 7.1. We assume
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Hypothesis 7.3. For each n 2 1, there exists a nonnegative, symmetric solution

to (7.3.3).

A sufficient condition for Hypothesis 7.3 is that the pair (A"T, CnT) be
stabilizable. If (A"T, 6") is detectable, then (7.3.3) has at most one non-

negative symmetric solution.

7.3.2 The Approximating Functional Estimator Gains

We define
n_ . 2n_
r n A~ n .
(7.3.4) fin = 2:: Fji ej 9 = E:: Fji ej, i=1,2, «ee, P,
j=1 j=n+l

where F" is the estimator gain matrix in (7.3.2), and we call %1n and éin
approximating functional estimator gains. In Chapter 8, we will see how %in and

~

g. . approximate the functional estimator gains %i and éi in (6.4.13) and

in
(6.4.15). We note that %1n and §in are elements of Vn while ?1 and 51 are ele-

ments of V and H, respectively.
7.4 The Finite Dimensional Campensators and the Realizable Closed-Loop Systems

The nth compensator consists of the control law in (7.2.2) applied to the
output of the nth estimator in (7.3.1); i.e., the control law for the compen-
sator is

(7.4.1) u, = - FM

where the control gain matrix s given by (7.2.3). The block diagram in
Figure 7.1 shows the realizable closed-loop system that results from the nth

compensator. We will refer to this system as the nth closed-1oop system.
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Az +Bu

N
"

<
"

C0 u+¢Cz

Control System

n o= (A" - B"F" + FU(CyF" - M In + FMy

- o nA
un = F'n

nth Compensator

Figure 7.1. nth Closed-Loop System

The transfer function of the nth compensator is
(7.4.2) 8, (s) = -F'(sI - [AM-BTFMEN(CoF-cM) ) THEY,

which is an m x p matrix function of the complex variable s for each n, as is
the similar transfer function &(s) in (6.2.14) for the infinite dimensional

compensator.

7.5 Hilbert Space Representation of the Finite Dimensional Compensators and
Associated Riccati Equations

Recall from Chapter 4 the relationships among xn(t), zn(t), gE(t) and n(t).
(See (4.1.1) - (4.1.6) and (4.2.1).) From here on the matrices 6n and an will
be defined as in (7.1.3) -(7.1.5).

We define ﬂn to be the operator whose matrix representation is

(7.5.1) " = w "

Since the matrix M" is symmetric and nonnegative, the operator nn is selfadjoint
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and nonnegative. The Riccati matrix equation (7.2.4) is equivalent to
(7.5.2) W AT + ™A - %R T 4 Q" = 0.

Since the matrix representations of the operators An and A; are A" and
w‘"(A")Tw", respectively, and the matrix representation of B: is (B")Tw",

(7.5.2) is the matrix representation of the Riccati operator equation

* -lox _
(7.5.3) A, + A, - T BR B + Q, = 0.

Thé control law in (7.2.2) is equivalent to
(7.5.4) u (t) = - F oz, (t)
with the gain operator Fn given by
(7.5.5) Fo= R7lBAI .

n

Next, we define ﬁn to be the nonnegative selfadjoint operator whose matrix

representation is

(7.5.6) i - W
The Riccati matrix equation (7.3.3) is equivalent to

(7.5.7) A & AWM WY - A" TR 4 Q" = o.
which is the matrix representation of the Riccati operator equation
(7.5.8) AL+ T AY - T C
(The matrix representation of the operator C; is w‘"(c“)T.)

=n

The estimator gain matrix F' is the matrix representation of the operator

-1

=1

-~ *A
(7.5.9) Fo= 1 ChR
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2n
If we write in(t) = }[: ﬁi(t)ei’ then the state estimator in (7.3.1) is equiva-
i=

—t

lent to

> &
"
>
N>
+
(o]
=
+
-n
——
<
1
(g
o

(7.5.10) u- Cn zn).

For the convergence results in Chapter 8, it is useful to have the approxi-
mating operators that are equivalent to the various matrices in Sections 7.1 -
7.4. The finite dimensional Riccati operator equations (7.5.3) and (7.5.8)
approximate, respectively, the infinite dimensional Riccati operator equations
(6.1.3) and (6.3.2). The control and estimator gain operators in (7.5.5) and
(7.5.9) approximate, respectively, the gain operators in (6.3.3) and (6.3.1).
Also, the state estimator in (7.5.10), which is just the Hilbert space represen-
tation of the estimator in (7.3.1), approximates the optimal infinite dimen-

sional estimator in Chapter 6.

7.6 Stochastic Interpretation of the Approximating Estimators

Our approximation of the infinite dimensional estimator is based on approxi-
mation of the infinite dimensional Riccati equation, whose structure is the same
for both control and estimator problems, and stochastic properties of the opti-
mal estimator probiem never enter our approximation theory. Furthermore, using
only the deterministic setting, in Chapter 8 we analyze the finite dimensional
estimators and the compensators based upon them. Nonetheless, we should con-
sider momentarily the sequence of finite dimensional stochastic estimation
problems whose solution is given by (7.3.1) - (7.3.3) or equivalently by (7.5.8)
- (7.5.10).
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First, recall how the covariance operator of a Hilbert space-valued random
variable is defined. The covariance operator of an E-valued random variable w

is the operator Q for which
(7.6.1)  expected value {<z,w>E<§,w>E} = <Qz,§>E, z, Z € E.

(See [Bal, CP2].)

With En given by (7.5.9) and (7.5.8), (7.5.10) is the Kalman-Bucy filter for

the system

(7.6.2) z_ = Anzn + Bnu + W

n n’

(7.6.3) y = Cou + an + Wy s

n

where wn(t) is an En-valued white noise process with covariance operator 6n and
wo(t) is an RP-valued white noise process with covariance operator (matrix) R.
Next, careful inspection will show that the filter defined by (7.3.1), (7.3.2)
and (7.3.3) is the matrix representation of the filter defined by (7.5.10),
(7.5.9) and (7.5.8).

With z, and n related as in (4.1.1) and (4.1.5), (7.6.2) and (7.6.3) are

equivalent to the system

(7.6.4) n=An+ B + v,

(7.6.5) 'y

n
Cou +Cn + wo .

2n

where v(t) is the R -valued noise process related to wn(t) by
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n
(7.6.6) w,(t) = Z (vi(t) e vi+n(t)ei)'

i=1
Certainly, a Kalman-Bucy filter for (7.6.4) and (7.6.5) has the form (7.3.1)
with the filter gain given by (7.3.2) and (7.3.3). This particular filter is
the matrix representation of the filter defined by (7.5.10), (7.5.9) and (7.5.8)
if and only if the matrix 5" defined by (7.1.7) is the covariance of the process
v(t). Since Q" is the matrix representation of 6n’ straightforward calculation
using (7.1.7) and (7.6.1) shows that the 6" in (7.1.7) is indeed the correct

covariance matrix.

Of course, if wn(t) and v(t) represent a physical disturbance to the struc-

ture, then wn(t) must have the form (O,wéz)(t)) and the first n elements of v(t)

must be zero, but this is not necessary for our analysis.

Our finite dimensional observers can be interpreted now as a sequence of
filters designed for the sequence of finite dimensional approximations to the
flexible structure, with the nth approximate system disturbed by the noise pro-
cess wn(t), whose covariance operator is 6n' According to Hypothesis 8.5 of
Chapter 8, these covariance operators converge to the operator 6 of Section 3 of
Chapter 6. If we have a reliable model of a stationary, zero-mean gaussian
disturbance for the structure, then we can take the covariance operator for this
disturbance to be 6 and think of the infinite dimensional observer as the opti-
mal estimator. But this interpretation is not necessary for the rest.of our

analysis.
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8. Convergence Theory for the Approximating LQG Problems

8.1 Convergence Results for Approximation of the Generic LQG Problem

Let the Hilbert space E and the linear operators A, T(t), B, Q and R be as
in Section 1 of Chapter 6. Suppose that there exists a sequence of finite
dimensional subspaces En’ with the projection of E onto En denoted by PEn’ and

: m _ nx
there exist sequences of operators A € L(En), B, € L(R ’En)’ Q, = Qy € L(En),

Qn 2 0.

Hypothesis 8.1. For each z € E,

(8.1.1) PEnz 2 as n-o>e,

(8.1.2) exp(Ant)PEnz - T(t)z

and

(8.1.3) exp(A;t)PEnz > T*(t)z as no»e=,

uniformly in t for t in bounded intervals; for each u € Rm,

(8.1.4) Bnu -+ Bu;

for each z € E,

(8.1.5) Q,PE,Z * Qz-

*
(In other words, PEn’ exp(Ant)PEn, exp(Ant)PEn, Bn and QnPEn converge strongly.)

Hypothesis 8.2. For each n, the system (An' Bn) is stabilizable and the system
(Q, A,) is detectable.

Hypothesis 8.2 guarantees that the Riccati equation (8.1.6) in the following

theorem has a unique nonnegative, selfadjoint solution.
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Theorem 8.3. For each n, let Il € L(En) be the nonnegative, selfadjoint solu-

tion to the Riccati operator equation

* -1 % _
(8.1.6) An Hn + Hn An - Hn Bn Rn Bn ﬂn = Qn.

If HHnH is bounded uniformly in n, then the Riccati algebraic equation (6.1.3)

has a nonnegative, selfadjoint solution I and nnPEn converges weakly to II; i.e.,

(8.1.7) <HnPEnz, z>E -» (llz, z>E Vz,ze¢ekE.

If additionally there exist positive constants M and b, independent of n, such
that

(8.1.8) lexp([A-B R” B B -bt t >0,

-1
then Il_Pg  and exp([An-BnR B;Hn]t)PEn converge strongly to Il and S(t),

respectively; i.e.,

(8.1.9) I, PE,z > Pz VzetE

and

(8.1.10) exp([A -B R B ]t)PE z » S(t)z VzeeceE,
1

uniformly in t = 0, where S(t) is the semigroup generated by A-BR™ B*P. If

there exists a positive constant 8§, independent of n, such that

(8.1.11) Q. 28,

n

then HPnH being bounded uniformly in n guarantees the existence of positive

constants M and b for which (8.1.8) holds for all n.
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Proof. The theorem foliows from Theorem 5.3 of [Gi4] and Theorem 6.7 of [Gi3],
whose proof is valid under the hypotheses here. In [Gil, Section 4] the opera-
tors An’ Qn and Hn are extended to all of E by defining them appropriately on
En. Banks and Kunisch [BK1] have modified Theorem 5.3 of [Gil] to obtain
essentially the present theorem without using the artificial, and rather clumsy,

extensions of En in the proof.

Theorem 8.4. The strong convergence in (8.1.9) implies uniform norm convergence

of the optimal feedback laws:

* *x
(8.1.12) IIBn mPe, -8 m| -0 as n-> =,

Proof. This follows from the selfadjointness of I, and Pg, and the finite

dimensionality of the control space R™.  See equations (4.23) and (4.24) of [Gil].

Nonconvergence results for the case where no open-loop damping is modeled

are given in [Gil, Gi2, GAZ2].

For each n, the finite dimensional operator Riccati equation (8.1.6) is an

approximation to the finite dimensional Riccati equation (6.1.3), but the solu-

tion to (8.1.6) also provides the solution to the optimal control problem

defined by
(8.1.13) z, = An z, + Bn u
and
[ T
(8.1.14) I = I (<Qn Zps ZOp + U Ru)dt.
0

The optimal control law for this problem is
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(801.15) u = "F Z
where the operator F e L(En, R™ is

1

- *
(8.1.16) Foo= RBY I PE .

Hypothesis 8.5. There exist sequences Cn € L(En,RP) and ﬁn € L(En) with

A AX
Qn = 0n > 0 such that

(8.1.17) cnPEn - C strongly
and
(8.1.18) 6nPEn > 6 strongly as n » =,

As with Bn, (8.1.17) implies that cnPEn and C; converge in norm to C and C*,

respectively.

Hypothesis 8.6. For each n, the system (A;, C; ) is stabilizable. (In par-
ticular, any unstable modes of the system (An,Cn) are observable.) Also, the
system (A%, 6n) is detectable.

We define the output of the system in (8.1.13) by
(8.1.19) Yy = C0 u+ Cn z.

The nth state estimator is

(8.1.20) 2 =A z +B u+F(y -Ciu-C_2)
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and Hn is the nonnegative, selfadjoint solution to the Riccati operator equation

+Q =0.

+

=

>
*

N - x ~-1 a
(8.1.22) A I - Hn Cn R Cn Hn

Hypothesis 8.2 implies that such a solution exists and is unique.

As n » =, the estimator defined by (8.1.20) - (8.1.22) converges to the
infinite dimensional estimator in Chapter 6 as indicated by the next two

theorems, which follow immediately from Theorems 8.3 and 8.4.

Theorem 8.7. Theorem 8.3 holds with A, B, Q, II, S(t), An’ Bn’ Qn and
I, replaced, respectively, by A%, C*, Q, 1, S*(t), A:, C;, ﬁn and ﬁN.

Theorem 8.8. 1If ﬁnPEn converges strongly to ﬁ, then

(8.1.23) lmcr-fac+0 asno-.

8.2 Convergence of the Closed-Loop Systems

th closed-loop system in Figure

Now we will consider the sense in which the n
7.1 approximates the optimal closed-loop system in Chapter 6. Recall from
Chapter 4 how the approximating open-loop semigroups Tn(-) and their adjoints
converge strongly and how the input operators Bn’ the measurement operators
Cn and their respective adjoints converge in norm. Section 8.1 has given suf-
ficient conditions for the approximating control and estimator gains to converge

to the gains for the optimal infinite dimensional compensator; i.e., (8.1.12)

and (8.1.23) imply
(8.2.1) "FnPEn - F|| » o0,

(8.2.2) uﬁn - F| »o0.

97



By identifying n with z_as in Section 5 of Chapter 7, we can identify the
closed-loop system in Figure 7.1 with a closed-loop system on the space E x En.
We denote the corresponding closed-loop semigroup and its generator by S,n(t)

and A_, respectively. Recall S_..(t) and A__ from Chapter 6.

Proofs of the remaining theorems in this chapter are given in [GA2]. Since
these proofs are rather technical and offer no particular insight into the

compensator-design process, we do not repeat them here.

Theorem 8.9. For t 2 0, swn(t)PEEn converges strongly to S__(t), and the con-

vergence is uniform in t for t in bounded intervals.

We should expect at least Theorem 8.9, but we need more. We should require,
for example, that if S(t) is uniformly exponentially stable, then Sun(t) must
be also for n sufficiently large. Although numerical results for numerous
examples with various kinds of damping and approximations suggest that this is
usually true, we have been unable to prove it in general. We do have the result

for the following important case.

Theorem 8.10.

i) Suppose that the basis vectors of the approximation scheme are the natural
modes of undamped free vibration and that the structural damping does not
couple the modes. Then Snn(t) converges in norm to S__(t), uniformly in

bounded t-intervals.

i1) If, additionally, S__(t) is uniformly exponentially stable, then Swn(t)

is uniformly exponentially stable for n sufficiently large.
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This paper emphasizes using the convergence of the approximating control and
estimator gain operators Fn and ?n’ and the convergence of the functional gains
that can be used to represent these operators, to determine the finite dimen-
sional compensator that will produce essentially optimal closed-1o0p
performance. However, close examination of A__ - A»n (see [GA2]) shows that,

for S_n(t) to converge to S__(t), we need the following differences to converge

to zero:
(8.2.3) BFaPeq - BF = B, (FPe, - F) + (B, - B)F,
(8.2.4) FaCaPen = FC = (F, = F)C.Pe, + F(C Pe - C).

The second term on the right hand side of each of these equations represents,
respectively, control and observation spillover, which has been studied exten-
sively by Balas [Ba2, Ba3]. Together, the control spillover and observation
spillover couple the modes modeled in the compensator with the modes not
modeled in the compensator. The spillover must go to zero -- as it does when

B, and C_ converge -- for A__ - A_  to go to zero.

We should ask, then, whether there exists a correlation between the con-
vergence of Fn and ?n and the elimination of spillover. The answer is yes if no
modes lie in the null space of the state weighting operator Q in the performance
index and if the assumed process noise, whose covariance operator is 6, excites
all modes, but this correlation is difficult to quantify. The two main factors
that determine the convergence rates of the gains are the Q-to-R ratio and the
damping, neither of which affects the convergence of Bn and Cn. On the other
hand, when either factor (small Q/R or large damping) causes the gains to con-
verge fast, it generally also causes the magnitude of F and F to be relatively
smalt, thereby reducing the magnitude of the spillover terms in (8.2.3) and

(8.2.4). Also, as n increases, the increasing frequencies of the truncated
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modes usually reduce the coupling effect of spillover. This is well known,
although it cannot be seen from the equations here. In examples that we have
worked, we have found that when n is large enough to produce convergence of the
control and estimator gains, the effect of any remaining spillover is negli-

gible. But this may not always be true, and spillover should be remembered.

8.3 Convergence of the Compensator Transfer Functions

The transfer function of the nth compensator (shown in the bottom block of

Figure 7.1) is given by (7.4.2) and the transfer function of the infinite dimen-
sional compensator is given by (6.2.14). Each transfer function is anm x p
matrix function of the complex variable s. We will denote the resolvent set of

[A - BF + ?(COF-C)] by p([A - BF + ?(COF—C)]).

Theorem 8.11. There exists a real number a, such that, if Re(s) > a;, then s €
p([An-Bn F"+§n(C0Fn-Cn)]) for all n, and Qn(s) converges to &(s), uniformly in

compact subsets of such s.

This result leaves much to be desired. For example, it does not guarantee
that any subset of the imaginary axis will lie in p([An-B"Fn + ?"(Can-Cn)]) for
sufficiently large n, even if all of the imaginary axis lies in P([A-BF +
?(COF-C)]). As with the convergence of the closed-loop systems, we can get more

for certain important cases.
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Remark 8.12. 1f the open-loop semigroup T(-) (whose generator is A) is an
analytic semigroup, then there exist real numbers a, 6 and M, with 8 and M posi-
tive, such that p([A-BF + ?(COF-C)]) contains the sector {s:|arg(s-a)| < % + 6},

and for each s in this sector,

(8.3.1) I(sT - [A-BF + F(CoF-C)]) '] < W/]s-al.

Theorem 8.13. i) If the basis vectors of the approximation scheme are the
natural modes of undamped free vibration and the structural damping does not
couple the modes, then each s in p([A-BF + ?(COF-C)]) is in p([A"-B"F" +
?n(COFn-Cn)]) for n sufficiently large and on(s) converges to &(s) as n » =,
uniformly in compact subsets of p([A-BF + ?(COF-C)]). ii) If, additionally,
T(-) is an analytic semigroup, then @n(s) converges to &(s) uniformly in the

sector described in Remark 8.12.

Theorem 8.14. If A has compact resolvent, then On(s) converges to &(s) for

each s € p([A-BF + ?(COF-C)]), uniformly in compact subsets.
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9. Application: Compensator Design for a Compound Structure
9.1 The LQG Problem for the Distributed Model of the Structure

Here we pose an infinite dimensional LQG problem for the hub-beam-tip mass
structure in Section 9 of Chapter 3 and Section 3 of Chapter 4. In the infinite
dimensional optimal control problem, we take Q = I in the performance index in
(6.1.1). This means that the state weighting term <Qz,z>E is twice the total
energy in the structure plus the square of the rigid-body rotation. Since there

is one input, the control weighting R is a scalar.
According to (6.4.12), the optimal control has the fuli-state feedback form

where x(t) has the form (3.9.1) and

(9.1.2) f = (Gf’¢f’8f) €V ’ g = (u99¢g’sg) € H.

In (9.1.2) e Bf, a_ and Bg are scalars and ¢f and ¢g are functions defined

g
over the length of the beam. Note that Bf = ¢f(2) is not used in the control

law -- recall (3.9.8) and (3.9.9).

The single sensor measures the rigid-body angle 8, and we assume that this
measurement has zero-mean Gaussian white noise with variance R = 10'4. Also, we
model a disturbance on the right side of (3.1.1) that is a zero-mean Gaussian
white noise process distributed uniformly over the beam and having concentrated
components acting on the hub and tip mass. For this disturbance, the covariance

operator 6 in (6.3.2) is

N 0 0
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According to (6.4.14), with p = 1, the gain operator F for the infinite

dimensional estimator has the form

A~

(9.1.4) Fy

(%aé)ys

>

and the functional estimator gains f and § have the form (9.1.2).
9.2 Approximation of the Optimal Control Gains

Now we solve the finite dimensional LQR problem in Chapter 7 for increasing
approximation orders n. For each n, the solution to the finite dimensional
Riccati equation (7.2.4) yields the matrix FM in (7.2.3). We use this control
gain matrix to compute the approximating functional control gains in (7.2.6) and
(7.2.7) and to compute the feedback law (7.4.1) for the finite dimensional com-

pensator in Figure 7.1. Recall that n = 2ne + 1 where Ne is the number of ele-

ments used to approximate the beam.

For the numerical solution to the nth approximating optimal control
problem, we begin with the n x n matrices K", 0" and Bg in (4.3.2) and the
n x n mass matrix M" computed with the inner product in (3.9.3) for the basis

vectors in (4.3.1). With these matrices, we form the 2n x 2n matrices A" and

B" in (4.1.6) and the n x n matrix K" and the 2n x 2n matrix W" in (7.1.1) and
(7.1.2); K" is k" with 1 added to the first element. Since the operator Q in
the infinite dimensional control problem is the identity, the 2n x 2n matrix

5" in (7.1.3) and (7.1.6) is equal to W', With these matrices, we solve (7.2.4)
numerically by the standard eigenvector decomposition of the Hamiltonian matrix

[KS1], often called the Potter method.

The approximating functional control gains, computed with (7.2.6) with

m= 1, have the form
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(9.2.1) o= (@ns Pens Begd 5 9 = (dgns Ogns Bop)de

As n increases, these functional gains should converge to the functional gains

in (9.1.2), which are optimal for the infinite dimensional control problem.

For the damping coefficient cj = 107

and the control weighting R = .05,
Figures 9.2.1 and 9.2.2 show the functional gain kernels ¢%A and °gn computed
with cubic Hermite splines and N = 4, 6, 8 and 10 beam elements. Table

9.2.1 1ists the corresponding scalar components of the gains. We have plotted
¢%; because the second derivative appears in the strain-energy inner product and
because ¢ converges in H2(0,2) , so that ¢;; converges in L,. The numerical
results indicate that ¢;; and bgq converge uniformly on [0,2], even though the
Hermite splines yield a ¢%; that is discontinuous at the nodes. We have seen
this convergence for the functional gains corresponding to beams in all of our

structure-control examples, and we suspect that it is the case generally,

although the convergence theorems in [GA2] guarantee only L2 convergence for

04y and ¢ .. Since B is not used in the ntM control 1aw, we omit it from the
tables.

e %n agn Bgn

4 4.4721  1.2440 ~133.87

6  4.4721  1.2973 -139.69

8  4.4721  1.3106 -141.15

10 4.4721  1.3141 ~141.54

Table 9.2.1. Scalar Components of Functional Control Gains

Damping coefficient g = 10'4; Control weighting R = .05
Number of elements Ng = 4, 6, 8, 10

Hermite Spline Approximation
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9.3 Approximation of the Optimal Estimator Gains

th

To compute the gain matrix F" for the n approximating estimator, we solve

£n

the Riccati equation (7.3.3), whose solution yields F according to (7.3.2).

The 1 x 2n matrix C" is given by (4.3.2), and 2n x 2n matrix 6" is

~ 0 0
An _
(90301) Q = [O M-n] ?

-n

according to (9.1.3) and (7.1.5). (As always, M ~ is the inverse of the mass

matrix.)

We compute the approximating functional estimator gains according to
(7.3.4). Like the functional control gains, the functional estimator gains have

the form
(9.3.2) o= (Qeps Gens Bep) 5 8 = (g gy Bep)e

As in the control problem, our convergence theory establishes only
L,-convergence for ¢ and 8gqs DUt the numerical results show uniform conver-
gence on [0,2]. Since ¢ (0) = ¢}n(0) = 0, the convergence of ¢;& implies the
convergence of Bfn = ¢fn(2). Thus, Bfn is not an independent piece of informa-
tion about the estimator gains while, as far as our convergence results go, Bgn
is. We maintain analogy with the control problem and 1ist only Bgn in the sub-
sequent tables. Figures 9.3.1 and 9.3.2 show ¢}é and ¢, and Table 9.3.1 Tlists

the scalars qfn’ a n and Bgn'

S
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ne afn dgn Bgn
4 5.3195 14.149 -1495.7
6 5.3567 14.347 -1517.5
8 5.3611 14.371 -1520.1
10 5.3623 14,377 -1520.8

Table 9.3.1. Scalar components of Functional Estimator Gains

Damping coefficient ¢y = 1077
Estimator R = 1074
Number of elements ne =4, 6, 8, 10

Hermite Spline Approximation

107



uoLjewixouddy auiidg ajiwiay

%y sqjuawala jo Jaqun

0

01 ‘8 ‘9 ‘v =

01 = ¥ Jojewlysa ¢, Q1 = 2 Bulrdweq

-

cme jJuauodwo) uler JojewL}sy |euotlduny 2 g6 aJnbld

00°q9 00°0s 00°0n 00°0¢ 00°02 00°01 000,
1 1 —
o
~J
~
o
| )
[ =
[o2)
w
w D= o

g =
b ] _
< - e
< D o
Lo =
' o

= &
2 8 _
= 0O ==
X G o 2
M @ . .
L. wn
N 00 o

N
//

// '
D -
N w
e
N b=
A 1
N o
N
~
o
]
[-=
=
@
=

)

N

N [
o
° o
©
o

00°0-

0Ix

uotjewixoaddy aut|dS 33LWI3H
01 ‘8 ‘9 ‘¢ = u SIUBWA|3 JO Jaquny

,-01 = ¥ Jojemtysa ¢ or = 05 Buidueq

4&9 juauodwo) utey JojewLSI (euoLIdUNg “T°E€°6 aJnbij

no-o9t 00°06 00°08 00°0L 00°09 00°0S co"oh 00°0¢ 00-02 0001

c0°0,

0€°0- gh°0- 19°0
108

0s°0 S1°0 00°0- S1°0-

gh'o

19°0



9.4 The Finite Dimensional Compensators

Now we construct the finite dimensional compensator in Figure 7.1 for 4,
6, 8 and 10 beam elements. Recall that (7.4.2) gives the transfer function of
the nth compensator. Figure 9.4.1 shows the frequency responses (bode plots) of
these compensators. The first graph in each figure contains the gain
(magnitude) plots for all four orders of approximation, while the phase plot
represents only the highest-order approximation. The finite dimensional compen-
sators converge to the infinite dimensional compensator as Ne increases. This

is consistent with the convergence of the functional control and estimator

gains.
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9.5 The Closed-Loop Eigenstructure

As (6.2.13) says, the spectrum of the optimal closed-loop system is the
union of the spectrum of (A-BF) and the spectrum of (A-?C). If the damping
operator D0 in (3.1.1) is bounded relative to AE for some u < 1 , then A has
compact resolvent. In this case, (A-BF) and (A—?C) also have compact resolvent
because BF and FC are bounded, so that the closed-l1oop spectrum consists only
of isolated eigenvalues, each with finite multiplicity. If, as in our example,

Dy = ChAL With o > 0, A does not have compact resolvent; if the eigenvalues

0 00

of A0 are w?, o(A) contains at most a finite number of compiex eigenvalues and

cSw? - 4) wj/z, which approach -= and the continuous

the sequences Aj = (—c0 +
spectrum {-llco} as j increases. When D0 = cOAg for any 0 < u < 1, the eigen-
vectors of A are the same as those when D0 = 0, and hence are complete in E.
For the remainder of this discussion, let us assume that, as in our
example, the spectrum of A (i.e., the open-loop spectrum) consists of isolated
eigenvalues with finite multiplicity and possibly a finite number of limit
points, and that the eigenvectors are compiete in E. (This is the case in our
example.) Then, since BF and FC are bounded with finite rank, it follows from
applying standard perturbation results [Ka2, pp. 208-214] that the asymptotic
properties of both o(A-BF) and o(A-?C) are identical to those of o(A). This
means that, beyond some number of eigenvalues, the eigenvalues of A-BF are vir-
tually identical to those of A because the optimal compensator essentially
controls only a finite number of modes. It also means that, although the opti-
mal estimator contains copies of all the modes of the structure, essentially it
observes only a finite number of modes and feeds virtually no sensor data into

the copies of the rest. Of course, the infinite number of inactive estimator

modes should be truncated before impliementation.
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We have not proved as much as we would 1ike to about how the
nth closed-loop spectrum -- i.e., the spectrum of the operator Awn discussed in
Section 2 of Chapter 8 -- converges to the optimal closed-loop spectrum. In
[GA2, Section 9], we showed that an extension of Amn converges in norm to
A__ (the optimal closed-loop generator in (6.2.9)) when the damping operator
D0 does not couple the modes of free vibration and the natural mode shapes are
the basis vectors for the approximation scheme. We also showed that, when A has

-1 converges in norm to (sI - AQ_)’I. In either of

compact resolvent, (sl - Aan)
these cases, it follows from the section of Kato cited above that the eigen-
values of A_ ~ converge to those of A__. Our numerical results indicate that

the eigenvalues of the nth

closed-loop system based on the Hermite spline
approximation also converge to those of the optimal closed-loop system, but we

have not proved this.

To compute the closed-loop eigenvalues, we approximated the flexible struc-
ture (the plant) with 15 natural modes (obtained using 30 beam elements with

Hermite splines) and formed the closed-loop system with the nth

compensator for
various values of n. The numerical results indicate that the optimal compen-
sator ignores and does not affect any mode past the ninth (the eight flexible

mode), and we are stretching matters to say that the ninth mode is controlled.

Table 9.5.1 1ists the eigenvalues for the closed-loop system consisting of
the 15-mode model of the structure and the compensator based on 10 elements with
Hermite spiines. For this compensator, n = 2*10 + 1 = 21, so that the estimator
contains approximations to the first 21 modes of the structure. Most of these
approximations have not converged to the true natural modes, as can be seen from
the imaginary parts of the eigenvalues under A-fc, which converge from above to

slight perturbations of the open-loop frequencies.
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The last twelve of the twenty-one modes in the 10-element Hermite spline
compensator are inactive as far as the input/output map of the compensator.
They do not couple with the rest of the compensator or with any modes in the
structure, and they could be truncated without affecting the closed-1o0p
response. The eigenvalues of the inactive compensator modes are equal to the
corresponding open-loop eigenvalues of the ten-element approximation to the
structure. The magnitudes of the real parts are larger than those for the
corresponding true open-loop eigenvalues because the damping is proportional to
the stiffness and the frequencies of the higher modes of the approximation are
greater than the true frequencies. Since the inactive compensator modes reside

th

in the n°" estimator, we 1ist the corresponding eigenvalues under (A-?C).

The closed-loop eigenvalues in Table 9.5.1 corresponding to modes 5, 6 and
7 are not equal to the corresponding eigenvalues of (A21-821F21) and
(A21-?21C21). (For each of modes 5, 6 and 7, we listed one pair of closed-loop
eigenvalues under (A-BF) and one pair under (A-?C).) This means that the
Hermite-spline compensator for ten elements is not as close to convergence as
the preceding functional gain and bode plots might suggest. Still, the closed-
loop response produced by the ten-element Hermite-spline compensator should be

close to optimal, except possibly for the sixth mode. Table 9.5.1 shows that

this closed-loop system is stable.
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Table 9.5.1.

OPEN-LOOP

TREAL MG

0.0 0.0

0.0 0.0
-0.00005 0.96522
-0.00052 3.21201
-0.00242 6.96055
-0.00840 12.96107
-0.02280 21.35301
-0.05149  32.08958
-0.10190 45.14356
-0.18305 60.50577
-0.30559 78.17711
-0.48184 98.16564
-0.72587 120.48589
-1,05361 145.15908
-1.48299 172.21366
-2.03407 201.68604

Closed-1oop Eigenvalues with Compensator

Based on Hermite Splines for 10 Elements

A-BF

TTREAL MAG
-0.03305 0.0
-0.00799 0.0
-0.11498 0.96522
-0.17909 3.21192
-0.15092 6.95926
-0.09170 12.94415
-0.03957 21.33965
-0.05132  32.08852
-0.10176 45.14358
-0.18300 60.50578
-0.30557 78.17711
-0.48183 98.16564
-0.72586 120.48589
-1.05361 145.15908
-1.48299 172.21366
-2.03407 201.68604
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REAL
-0.27579
-0.27579
-1.07059
-0.83359
-0.33913
-0.14130
-0.09902
-0.08468
-0.11477
-0.19281
-0.32191
-0.51073
-0.87879
-1.28294
-1.89848
-2.78066
-4.03103
-5.78013
-8.15257

0.33295
-0.33295
1.52394
3.27848
6.97026
12.98792
21.40999
32.23854
45.54628
61.43464
80.02459
100.99211
132.55647
160.16850
194.84366
235.80614
283.90815
339.95430
403.71367



10. Other Applications Issues and Future Research Topics

The methods developed or applied in this monograph provide a mathematically
sound yet practical framework for designing feedback control systems for dis-
tributed parameter structural systems. As in most research, development of the
ideas presented here raises new questions as it answers current ones. In this
chapter we mention some of the issues which have emerged during the course of
this work. Some of these we have pursued to the extent of achieving promising
but as yet incomplete results. Others we note as issues for future investiga-
tion. The ideas will fall into three areas: 1) discrete time modeling and

control, 2) robustness, and 3) model reduction.

10.1 Discrete Time Modeling and Control

Recent research [GR1, GR2, GR3] has developed approximation methods and con-
vergence results for discrete-time LQG control problems for distributed systems.
Much of the discrete-time theory is analogous to that in this monograph for the
continuous-time problem. The infinite dimensional discrete-time theory and
approximation methods have been applied to control of flexible structures in

[GR1, GR2]. Further research is needed on numerical difficulties encountered in

approximate solution of infinite dimensional discrete-time Riccati operator
equations. One respect in which the discrete-time probiem differs from the
continuous-time problem is that boundary control for flexible structures usually
results in a bounded input operator for the discrete-time problem, whereas the
input operators corresponding to boundary controls in continuous-time problems
usually are unbounded. This is the subject of [GR2, GR3]. Further work is
needed along these lines to expand the class of boundary operators and the class
of unbounded measurement operators to which the discrete-time approximation

theory applies.
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Also, discrete-time input/output representation of infinite dimensional
models of flexible structures hés been investigated in [Jal, GJ1]. Infinite
dimensional auto-regressive-moving average (ARMA) models of both the plant and
the compensator have been developed for simple structures. Preliminary approxi-
mation theory'for such models has been developed, but considerably more work is
needed to bring this point of view to the level of maturity and usefulness of
the state-space methods for distributed systems. Such research should be par-
ticularly important for adaptive identification and control of flexible struc-
tures, as suggested by the large orders of finite dimensional ARMA models found
necessary in [JGl, JG2] for adaptive identification of an experimental flexible

structure at NASA Langley Research Center.

10.2 Robustness

An important feature of the approach developed in this monograph is that the
order and modal composition of the model are automatically adjusted as a function
of the performance objectives, disturbance environment, sensor locations and
actuator locations. This is an effective way to deal with problems due to model
truncation. However, there is nothing in the approach that explicitly addresses
the issue of modeling errors due to poorly known parameter values (e.g., fre-
quencies, damping constants, mode shapes, etc.). There are always some dif-
ferences between a model and the physical system the model is supposed to
describe. Since control system designs are based on models, one must always be
concerned about the degree to which the theoretical performance is degraded due
to differences between the model and the physical system. Hence, modeling

errors of all types are a major concern in designing control systems.

In addressing the modeling error problem, it is important to describe the

modeling errors in a way that facilitates dealing with them. One approach is
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to use the structured uncertainty description of Doyle [Dol]. Structured uncer-
tainty models represent specific modeling errors (frequency errors, damping
errors, mode shape errors, etc.) jn the form of auxiliary multivariable feedback
loops appended to the plant model. These descriptions may be used as the
starting point for different approaches to robust controller design, e.g.,
Doyle's p synthesis approach [Dol] or the Linear Quadratic Gaussian (LQG)
approach which is the focus of this monograph. In the context of the LQG
approach, the forms of the auxiliary feedback loops motivate changes in the per-
formance weighting matrix in the LQR problem and the disturbance noise
covariance matrix in the K-B filter problem. These changes involve adding
weighting matrices which reflect the specific nature of the uncertainty [BM1,
TS1]. Making the additional terms large or small permits a controlled trade-off
between performance and robustness. Thus one can arrive at a suitable balance
between achieving a desired performance goal and minimizing the effect of struc-

tured uncertainties in the plant model.

Some results of using this approach are described in [BM1] and they show a
marked increase in robustness with only a modest loss in performance. The
robustness is not achieved by rolling off the loop gain before the first uncer-
tain modes. Several of the uncertain modes are actively controlled. Numerical
results in [BM1] focus on uncertain frequencies, but the methods used can be
extended to other types of parameter errors. Work to study the nature and

effectiveness of these extensions is currently in progress.

Another approach for improving robustness involves using nonlinear
programming to achieve robustness by sensitivity optimization, which means mini-
mizing the sensitivity of closed-loop eigenvalues with respect to uncertainties

in plant parameters. The method can also be used to optimize the shape of
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structural elements to reduce structural weight. An overall control/structure
optimal design can be achieved by using both of these features simultaneously.
Appropriate constraints are imposed to ensure that high performance is main-
tained. This approach to robustness is developed in papers [Adl, AGl, AG2].
The idea is to use nonlinear programming to reduce the sensitivity of the
closed-1oop eigenvalues with respect to modeling errors, while maintaining suf-

ficiently high performance of the closed-1oop control system.

The paper [AG1] derives formulas for the sensitivities of closed-loop eigen-
values with respect to uncertain plant parameters and presents a numerical
example that demonstrates the effect of these sensitivities on robustness in
control of a flexible structure. The analysis in [AG1] indicates that the
first-order sensitivities of the closed-1o0p eigenvalues approach infinity as a
controller and an estimator eigenvalue approach each other and suggests that
robustness can be improved by separating controller and estimator eigenvalues.
The numerical results for the flexible structure example in [AGl, AG2]
demonstrate the improved robustness achieved by moving the estimator eigenvalues

to the left of the controller eigenvalues.

The work in [Adl, AGl, AG2] has led to a general guideline for choosing the
state weighting matrix and the process noise covariance (the Q matrices) in the
LQG problem to improve robustness: After the state weighting for the control
problem is chosen according to performance criteria, the Q matrix for the esti-
mator design is chosen to move the estimator eigenvalues for the controlled
modes with higher frequencies sufficiently to the left of the closed-loop
controller eigenvalues to reduce the closed-loop eigenvalue sensitivities to
acceptable levels. Examples of Q matrices that achieve this sensitivity reduc-

tion are given in [Adl, AG1-AG2]. In general, the estimator Q for a modal
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representation of a structure is diagonal and its diagonal elements increase as

the corresponding structural frequencies increase.

References [Adl, AG2] discuss optimal eigenvalue sensitivity reduction in
conjunction with optimal weight reduction by structural shape optimization. The
idea is to combine minimization of closed-l1oop eigenvalue sensitivity with opti-
mization of structural mass distribution, subject to constraints on eigenvalue
location, to produce a robust controller, a 1ight structure and a closed-loop
system with fast response. While the measure of robustness used in the design
objective is the first-order sensitivity of the closed-l1oop eigenvalues, the
final evaluation of the robustness of the design is based on large variations in
the uncertain parameters. The numerical results in [Adl, AGl, AG2] demonstrate
the effectiveness of the method for producing both a robust control system and a

1ight structure.

Recently, a significant body of literature has been devoted to Liapunov sta-
bility methods for robustness analysis and design of control systems with struc-
tured uncertainties [HB1, KB1, Yel, YL1, ZK1]. These papers use quadratic
Liapunov functions to estimate a region in parameter space for which a control

system will remain stable. Such Liapunov robustness analysis is combined in

[Bel, GB1, PH1] with nonstandard Riccati matrix equations for robust controller

design.

The main advantage of these Liapunov methods is that they can be applied in
a straightforward and computationally efficient manner to complex, realistic
systems. However, the methods generally yield conservative robustness estimates
because, with the possible exception of the method in [HB1], all of the Liapunov

robustness methods in current literature are zero-order in the sense that a
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single Liapunov function is used for all permissible variations in the uncertain

parameters.

Recent research at UCLA [LG1] has produced a first-order Liapunov robustness
analysis approach, which allows the Liapunov function to vary with the uncertain
plant parameters. On most problems the robustness margins predicted by this new
method are substantially larger than those predicted by the zero-order methods.
If the first-order Liapunov robustness analysis continues to be as successful as
it has been in early applications, an important line of research should be to
develop related first-order robustness design methods motivated by the
Riccati/Liapunov methods in [Bel, PH1]. Because of the theory and approximation
methods presented in this text for infinite dimensional Riccati equations and

the success of the applications to optimal controller design for large space

structures, it seems reasonable to expect that this kind of theory and the asso-
ciated approximation methods could be used to develop Riccati/Liapunov robust

controller design methods for large space structures.

10.3 Model Reduction

The model reduction work described in this monograph deals with systems
described by linear constant coefficient differential equations. This is a
feature that is shared with most of the model reduction work reported in the
literature. Equations of this type arise when one is studying small vibrations
about a state of rest in inertial space and this is a situation of great
interest for applications. Constant coefficient equations may also arise for
some systems performing small vibrations about a state of steady motion (e.g.,
steady spin). In many cases of practical interest, however, the nominal motion

either is periodic or consists of a single maneuver over a finite time interval.
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If special inertial symmetry conditions are not satisfied, the linearized
equations describing small vibrations about periodic motions generally have
periodic coefficients, while a general finite time maneuver often leads to
linear equations with time varying coefficients of a general form. A Dual-Spin
Spacecraft where both bodies are flexible and neither body is inertially sym-
metric is an example of a system where small variations about steady spin lead
to linear equations with periodic coefficients. During steady state operation,

the equations governing transverse attitude motion of such a spacecraft assume

the form:
(10.3.1) X = A(t)X ; X(0) = X0
(10.3.2) A(t+T) = A(t)

where T = Z"Iwrel and wr is the relative rate between the two bodies.

el
If one wishes to use the methods of this monograph to design a control system
for such a spacecraft, it would be desirable to have a scheme similar to that

described in Ch. 5 for obtaining lower order models of the system.

Of the various methods available for model reduction, balanced realization
theory is perhaps the best suited for extension to the time varying case. The
application of balanced realization theory for time varying systems has been
considered in the literature [SS1, VK1], but work in this area has not been
extensive. Examples worked out so far have been simple and nonphysical. (In
particular, these examples were not from the field of structural dynamics.) The
potential of this approach for time varying structural systems is largely

untapped, and it would make a suitable topic for further investigation.
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APPENDIX A. Asymptotic Expansion for the Observability Grammian
The observability grammian satisfies the equation

(A1) WA + AT Wy + ¢’c =0

For the 1ightly damped mechanical systems of Section 5.5,

0 I
(A-2) A = , c=[c,c,l

g2 —eh

The development of an expansion for wc in Section (5.5) is simplified somewhat

T

because the matrix BB is zero except for the lower right hand quadrant. In

contrast, the matrix CCT is generally full, so the development of an expansion
for wo is more complicated. For this reason, we will develop an expression only

T

for the first two terms in this expansion. When CC" is full, there is no par-

ticular advantage in assuming a form like that of Eq. (5.5.8) for wo. Let

A 0 I 0 0
(A.3) AO = . Al =
22 0 0 -A
1
(A.4) No =< U+ V+eW+...

Substituting (A.2-A.4) into (A.1) yields

1 T T T
(A.5) E[UAO + Ay uj + [VA0 + AV +UA + A

T
1 Y+C o

T

0 + AIV] + 00 =0

+ e[WAO + AN + VA

1
Set the coefficients of like powers in € equal to zero to obtain

+AlU =0

(A.6) UA0 0
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—

(A.7) VAg + ALV + UA, + ATU +C'C = 0

0

W+ VA, + A

1 V=20

(=} o
——

(A.8) WAG + A

etc. Writing (A.6) in partitioned form leads to

2 2 T
(A.9) ulZQ + Q Ujp = 0
2. _o . 2 _
T -
(A.11) Ujp + Upy = 0

It follows from (A.9-A.11) and the assumption that the frequencies in QZ are

distinct that

(A.12) U, = 0
(A.13) Ujps Upy are diagonal
Thus,
2
Q Usy 0
(A.14) U=
0 Usy

To determine the elements of the diagonal matrix Usps write (A.7) in partitioned

form
T T~ _
(A.15) Vig ¥ Vo - A Uy - uzzA + Cvcv =0
2 T~ _ . 2 T~ _
(A.16) “QVyp + Vyp + CpCv =0 ; Vip m VRt + CVCp =0
2T 2 ATh
(A.17) -Q Vi - VIZQ + CpCp =0
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The diagonal elements of Vi2 can be easily found from (A.17)

-
(CpCo)i
7
1

(A.18) (Vlz)ii = >
w

Using (A.18) and considering the diagonal terms in (A.15) one may derive ex-

plicit expressions for the diagonal elements of Uspe

:
AN

_ Ypipid

(A.19) (UZZ)ii = > 5
0y B4

2/aT
* wi(cvcv)ii

Equations (A.14) and (A.19) define the dominant first term in the expansion for
wo. To determine the second term in (A.4), we proceed to examine the off

diagonal terms in (A.15)-(A.17). This leads to

T 2,7 2
(¢ ). +ws(C.C).: - wi(hu,, + u,,b).
(A.20) (v,,),, = —2B 1 itv-viij it 22 22 i i# ]
1274] A
J i
2/~T 2,7
. wi(c.C ). - wi(c.C)..
A R DA N ipviii, oL
(A.21) (vll)ij = 2 7 3 i#]
Wy - ¥
«’c).. - (cTc)..
- pvii) p v . .
(A.22) (VZZ)ij ) 22 ] i#]
Wy - oy

Equations (A.18) and (A.20) define Vi2 compietely, and (A.21) and (A.22) define
the off diagonal terms of Vi1 and Vope To find the diagonal terms of Vi1 and

Vogs Eq. (A.8) must be written in partitioned form.

T -
2 o 2 T
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2. T

2
(A.25) -Q Wio = Wi

Q- =0

From (A.25) we find that

(A.26) (Wyp)yy = 0

Setting the diagonal elements of (A.23) equal to zero and using (A.26) yields

gk

- L
(A.27) (a2)is = 71, (81 (vp2)s + (V)i Byl

x x

Hou
-t p—

n T T
_ Z (€ )i~ (CoC) ik
=3 77

ws -
i wk

.I.—n

x x

L ]
-ds Pt

Then, considering the diagonal terms in (A.16),
(A.28) (vi)eq = (Vpp)ys - (€1C,)
* 117414 22711 pv

Thus Eqs. (A.14, A.19, A.20-A.22, A.27, A.28) represent the first two terms in

the expansion for wo.
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