36,916 research outputs found
Turbulence and turbulent mixing in natural fluids
Turbulence and turbulent mixing in natural fluids begins with big bang
turbulence powered by spinning combustible combinations of Planck particles and
Planck antiparticles. Particle prograde accretions on a spinning pair releases
42% of the particle rest mass energy to produce more fuel for turbulent
combustion. Negative viscous stresses and negative turbulence stresses work
against gravity, extracting mass-energy and space-time from the vacuum.
Turbulence mixes cooling temperatures until strong-force viscous stresses
freeze out turbulent mixing patterns as the first fossil turbulence. Cosmic
microwave background temperature anisotropies show big bang turbulence fossils
along with fossils of weak plasma turbulence triggered as plasma photon-viscous
forces permit gravitational fragmentation on supercluster to galaxy mass
scales. Turbulent morphologies and viscous-turbulent lengths appear as linear
gas-proto-galaxy-clusters in the Hubble ultra-deep-field at z~7. Proto-galaxies
fragment into Jeans-mass-clumps of primordial-gas-planets at decoupling: the
dark matter of galaxies. Shortly after the plasma to gas transition,
planet-mergers produce stars that explode on overfeeding to fertilize and
distribute the first life.Comment: 23 pages 12 figures, Turbulent Mixing and Beyond 2009 International
Center for Theoretical Physics conference, Trieste, Italy. Revision according
to Referee comments. Accepted for Physica Scripta Topical Issue to be
published in 201
Recommended from our members
How Useful are High-Precision Delta ?17O Data in Defining the Asteroidal Sources of Meteorites?: Evidence from Main-Group Pallasites, Primitive and Differentiated Achondrites
High-precision oxygen isotope analysis is capable of revealing important information about the relationship between different meteorite groups. New data confirm that the main-group pallasites are from a distinct source to either the HEDs or mesosiderites
Contour surveying system Patent
Describing device for surveying contour of surface using X-Y plotter and traveling transduce
Weighing the galactic disc using the Jeans equation: lessons from simulations
Using three-dimensional stellar kinematic data from simulated galaxies, we examine the efficacy of a Jeans equation analysis in reconstructing the total disk surface density, including the dark matter, at the ‘Solar’ radius. Our simulation data set includes galaxies formed in a cosmological context using state-of-the-art high-resolution cosmological zoom simulations, and other idealized models. The cosmologically formed galaxies have been demonstrated to lie on many of the observed scaling relations for late-type spirals, and thus offer an interesting surrogate for real galaxies with the obvious advantage that all the kinematical data are known perfectly. We show that the vertical velocity dispersion is typically the dominant kinematic quantity in the analysis, and that the traditional method of using only the vertical force is reasonably effective at low heights above the disk plane. At higher heights the inclusion of the radial force becomes increasingly important. We also show that the method is sensitive to uncertainties in the measured disk parameters, particularly the scalelengths of the assumed double exponential density distribution, and the scalelength of the radial velocity dispersion. In addition, we show that disk structure and low number statistics can lead to significant errors in the calculated surface densities. Finally, we examine the implications of our results for previous studies of this sort, suggesting that more accurate measurements of the scalelengths may help reconcile conflicting estimates of the local dark matter density in the literature
Gravitational hydrodynamics of large scale structure formation
The gravitational hydrodynamics of the primordial plasma with neutrino hot
dark matter is considered as a challenge to the bottom-up cold dark matter
paradigm. Viscosity and turbulence induce a top-down fragmentation scenario
before and at decoupling. The first step is the creation of voids in the
plasma, which expand to 37 Mpc on the average now. The remaining matter clumps
turn into galaxy clusters. Turbulence produced at expanding void boundaries
causes a linear morphology of 3 kpc fragmenting protogalaxies along vortex
lines. At decoupling galaxies and proto-globular star clusters arise; the
latter constitute the galactic dark matter halos and consist themselves of
earth-mass H-He planets. Frozen planets are observed in microlensing and
white-dwarf-heated ones in planetary nebulae. The approach also explains the
Tully-Fisher and Faber-Jackson relations, and cosmic microwave temperature
fluctuations of micro-Kelvins.Comment: 6 pages, no figure
X-raying the Winds of Luminous Active Galaxies
We briefly describe some recent observational results, mainly at X-ray
wavelengths, on the winds of luminous active galactic nuclei (AGNs). These
winds likely play a significant role in galaxy feedback. Topics covered include
(1) Relations between X-ray and UV absorption in Broad Absorption Line (BAL)
and mini-BAL quasars; (2) X-ray absorption in radio-loud BAL quasars; and (3)
Evidence for relativistic iron K BALs in the X-ray spectra of a few bright
quasars. We also mention some key outstanding problems and prospects for future
advances; e.g., with the International X-ray Observatory (IXO).Comment: 7 pages, 3 figures, to appear in proceedings of the conference "The
Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", June
2009, Madison, Wisconsi
Portable dynamic fundus instrument
A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data
Simple and accurate modelling of the gravitational potential produced by thick and thin exponential discs
We present accurate models of the gravitational potential produced by a radially exponential disc mass distribution. The models are produced by combining three separate Miyamoto–Nagai discs. Such models have been used previously to model the disc of the Milky Way, but here we extend this framework to allow its application to discs of any mass, scalelength, and a wide range of thickness from infinitely thin to near spherical (ellipticities from 0 to 0.9). The models have the advantage of simplicity of implementation, and we expect faster run speeds over a double exponential disc treatment. The potentials are fully analytical, and differentiable at all points. The mass distribution of our models deviates from the radial mass distribution of a pure exponential disc by <0.4 per cent out to 4 disc scalelengths, and <1.9 per cent out to 10 disc scalelengths. We tabulate fitting parameters which facilitate construction of exponential discs for any scalelength, and a wide range of disc thickness (a user-friendly, web-based interface is also available). Our recipe is well suited for numerical modelling of the tidal effects of a giant disc galaxy on star clusters or dwarf galaxies. We consider three worked examples; the Milky Way thin and thick disc, and a discy dwarf galaxy
Broad Absorption Line Variability in Radio-Loud Quasars
We investigate C IV broad absorption line (BAL) variability within a sample
of 46 radio-loud quasars (RLQs), selected from SDSS/FIRST data to include both
core-dominated (39) and lobe-dominated (7) objects. The sample consists
primarily of high-ionization BAL quasars, and a substantial fraction have large
BAL velocities or equivalent widths; their radio luminosities and
radio-loudness values span ~2.5 orders of magnitude. We have obtained 34 new
Hobby-Eberly Telescope (HET) spectra of 28 BAL RLQs to compare to earlier SDSS
data, and we also incorporate archival coverage (primarily dual-epoch SDSS) for
a total set of 78 pairs of equivalent width measurements for 46 BAL RLQs,
probing rest-frame timescales of ~80-6000 d (median 500 d). In general, only
modest changes in the depths of segments of absorption troughs are observed,
akin to those seen in prior studies of BAL RQQs. Also similar to previous
findings for RQQs, the RLQs studied here are more likely to display BAL
variability on longer rest-frame timescales. However, typical values of
|Delta_EW| and |Delta_EW|/ are about 40+/-20% lower for BAL RLQs when
compared with those of a timescale-matched sample of BAL RQQs. Optical
continuum variability is of similar amplitude in BAL RLQs and BAL RQQs; for
both RLQs and RQQs, continuum variability tends to be stronger on longer
timescales. BAL variability in RLQs does not obviously depend upon their radio
luminosities or radio-loudness values, but we do find tentative evidence for
greater fractional BAL variability within lobe-dominated RLQs. Enhanced BAL
variability within more edge-on (lobe-dominated) RLQs supports some geometrical
dependence to the outflow structure.Comment: 27 pages, 16 figures, 6 tables, accepted to MNRAS, full Appendix A at
http://www.macalester.edu/~bmille13/balrlqs.htm
- …