13,444 research outputs found

    Tunable coaxial resonators based on silicon optical fibers

    No full text
    Thermal tuning of a coaxial fiber resonator with a silica cladding surrounding an inner silicon core is investigated. By pumping the silicon with below bandgap light, it is possible to redshift the WGM resonances

    Intraoperative Organ Motion Models with an Ensemble of Conditional Generative Adversarial Networks

    Get PDF
    In this paper, we describe how a patient-specific, ultrasound-probe-induced prostate motion model can be directly generated from a single preoperative MR image. Our motion model allows for sampling from the conditional distribution of dense displacement fields, is encoded by a generative neural network conditioned on a medical image, and accepts random noise as additional input. The generative network is trained by a minimax optimisation with a second discriminative neural network, tasked to distinguish generated samples from training motion data. In this work, we propose that 1) jointly optimising a third conditioning neural network that pre-processes the input image, can effectively extract patient-specific features for conditioning; and 2) combining multiple generative models trained separately with heuristically pre-disjointed training data sets can adequately mitigate the problem of mode collapse. Trained with diagnostic T2-weighted MR images from 143 real patients and 73,216 3D dense displacement fields from finite element simulations of intraoperative prostate motion due to transrectal ultrasound probe pressure, the proposed models produced physically-plausible patient-specific motion of prostate glands. The ability to capture biomechanically simulated motion was evaluated using two errors representing generalisability and specificity of the model. The median values, calculated from a 10-fold cross-validation, were 2.8+/-0.3 mm and 1.7+/-0.1 mm, respectively. We conclude that the introduced approach demonstrates the feasibility of applying state-of-the-art machine learning algorithms to generate organ motion models from patient images, and shows significant promise for future research.Comment: Accepted to MICCAI 201

    Magnetoelastic and structural properties of azurite Cu3(CO3)2(OH)2 from neutron scattering and muon spin rotation

    Full text link
    Azurite, Cu3(CO3)2(OH)2, has been considered an ideal example of a one-dimensional (1D) diamond chain antiferromagnet. Early studies of this material imply the presence of an ordered antiferromagnetic phase below TN1.9T_N \sim 1.9 K while magnetization measurements have revealed a 1/3 magnetization plateau. Until now, no corroborating neutron scattering results have been published to confirm the ordered magnetic moment structure. We present recent neutron diffraction results which reveal the presence of commensurate magnetic order in azurite which coexists with significant magnetoelastic strain. The latter of these effects may indicate the presence of spin frustration in zero applied magnetic field. Muon spin rotation, μ\muSR, reveals an onset of short-range order below 3K and confirms long-range order below TNT_N.Comment: 5 pages, 4 figures, PHYSICAL REVIEW B 81, 140406(R) (2010

    Educating renal nurses - inferior vena caval ultrasound for intravascular volume assessment

    Get PDF
    Aim: Volume status of haemodialysis patients can be evaluated by trained doctors using ultrasound (US) of the inferior vena cava (IVC). To date, renal nurses have not been taught this skill. As part of a larger study exploring the use of US by renal nurses we developed an educational program to ensure that renal nurses received adequate US training to attain competence in IVC ultrasound (IVC-US). Methods: The educational program was divided into four parts. Initially a clinical US expert delivered the necessary theoretical and then practical components of the program. After this the nurse undertook a period of self-directed US practice (100 scans). During this period three formative reviews of the recorded scan clips with feedback occurred. Specific feedback covered US technique, image optimisation and acquisition and image interpretation. Finally, as a summative assessment the nurse performed and interpreted 60 scans on 10 dialysis patients. These scans were independently assessed for quality and the nurse interpretations reviewed for accuracy, prior to deeming the candidate competent to independently perform IVC-US. Findings: Ultrasound education involves knowledge and skill acquisition. Initial theoretical and practical education must be translated into competence through task repetition and targeted feedback. A staged educational program that involves these components is likely to be successful. The rate for US skill acquisition varies and a summative assessment ensuring competence prior to independent scanning is important. Conclusions: This four-step program demonstrated that it is feasible to educate a renal nurse in IVC-US for intravascular volume assessment

    Characterization of 1D photonic crystal nanobeam cavities using curved microfiber

    Get PDF
    We investigate high-Q, small mode volume photonic crystal nanobeam cavities using a curved, tapered optical microfiber loop. The strength of the coupling between the cavity and the microfiber loop is shown to depend on the contact position on the nanobeam, angle between the nanobeam and the microfiber, and polarization of the light in the fiber. The results are compared to a resonant scattering measurement

    Fusion splicing of silicon optical fibres

    No full text
    The first splicing experiments between silicon optical fibres (SOFs) and conventional fibres are investigated. An optimized fusion splicing approach for a polycrystalline SOF is demonstrated and the material properties after splicing are characterized

    Polarimetric Properties of Flux-Ropes and Sheared Arcades in Coronal Prominence Cavities

    Full text link
    The coronal magnetic field is the primary driver of solar dynamic events. Linear and circular polarization signals of certain infrared coronal emission lines contain information about the magnetic field, and to access this information, either a forward or an inversion method must be used. We study three coronal magnetic configurations that are applicable to polar-crown filament cavities by doing forward calculations to produce synthetic polarization data. We analyze these forward data to determine the distinguishing characteristics of each model. We conclude that it is possible to distinguish between cylindrical flux ropes, spheromak flux ropes, and sheared arcades using coronal polarization measurements. If one of these models is found to be consistent with observational measurements, it will mean positive identification of the magnetic morphology that surrounds certain quiescent filaments, which will lead to a greater understanding of how they form and why they erupt.Comment: 22 pages, 8 figures, Solar Physics topical issue: Coronal Magnetis

    A Catalogue of Field Horizontal Branch Stars Aligned with High Velocity Clouds

    Full text link
    We present a catalogue of 430 Field Horizontal Branch (FHB) stars, selected from the Hamburg/ESO Survey (HES), which fortuitously align with high column density neutral hydrogen (HI) High-Velocity Cloud (HVC) gas. These stars are ideal candidates for absorption-line studies of HVCs, attempts at which have been made for almost 40 years with little success. A parent sample of 8321 HES FHB stars was used to extract HI spectra along each line-of-sight, using the HI Parkes All-Sky Survey. All lines-of-sight aligned with high velocity HI emission with peak brightness temperatures greater than 120mK were examined. The HI spectra of these 430 probes were visually screened and cross-referenced with several HVC catalogues. In a forthcoming paper, we report on the results of high-resolution spectroscopic observations of a sample of stars drawn from this catalogue.Comment: 7 pages, 4 figures. ApJS accepted. Full catalogue and all online-only images available at http://astronomy.swin.edu.au/staff/cthom/catalogue/index.htm

    Thin disk kinematics from RAVE and the solar motion

    Get PDF
    Aims. We study the Milky Way thin disk with the Radial Velocity Experiment (RAVE) survey. We consider the thin and thick disks as different Galactic components and present a technique to statistically disentangle the two populations. Then we focus our attention on the thin disk component. Methods. We disentangle the thin disk component from amixture of the thin and thick disks using a data set providing radial velocities, proper motions, and photometrically determined distances. Results. We present the trend of the velocity dispersions in the thin disk component of the Milky Way (MW) in the radial direction above and below the Galactic plane using data from the RAdial Velocity Experiment (RAVE). The selected sample is a limited subsample from the entire RAVE catalogue, roughly mapping up to 500 pc above and below the Galactic plane, a few degrees in azimuthal direction and covering a radial extension of 2.0 kpc around the solar position. The solar motion relative to the local standard of rest is also re-determined with the isolated thin disk component. Major results are the trend of the velocity mean and dispersion in the radial and vertical direction. In addition the azimuthal components of the solar motion relative to the local standard of rest and the velocity dispersion are discussed.Comment: accepted on A&A, please see companion paper "THICK disk kinem...
    corecore