37,957 research outputs found

    Icing research tunnel rotating bar calibration measurement system

    Get PDF
    In order to measure icing patterns across a test section of the Icing Research Tunnel, an automated rotating bar measurement system was developed at the NASA Lewis Research Center. In comparison with the previously used manual measurement system, this system provides a number of improvements: increased accuracy and repeatability, increased number of data points, reduced tunnel operating time, and improved documentation. The automated system uses a linear variable differential transformer (LVDT) to measure ice accretion. This instrument is driven along the bar by means of an intelligent stepper motor which also controls data recording. This paper describes the rotating bar calibration measurement system

    Ice thickness measurement system for the icing research tunnel calibration

    Get PDF
    To measure icing patterns across a test section of the Icing Research Tunnel, an automated rotating bar measurement system was developed at NASA LeRC. In comparison with the previously used manual measurement system, this system provides a number of improvements: increased accuracy and repeatability, increased number of data points, reduced tunnel operating time, and improved documentation. The automated system uses a linear variable differential transformer (LVDT) to measure ice accretion. This instrument is driven along the bar by means of an intelligent stepper motor which also controls data recording. This paper describes the rotating bar calibration measurement system

    Generalised action-angle coordinates defined on island chains

    Full text link
    Straight-field-line coordinates are very useful for representing magnetic fields in toroidally confined plasmas, but fundamental problems arise regarding their definition in 3-D geometries because of the formation of islands and chaotic field regions, ie non-integrability. In Hamiltonian dynamical systems terms these coordinates are a form of action-angle variables, which are normally defined only for integrable systems. In order to describe 3-D magnetic field systems, a generalisation of this concept was proposed recently by the present authors that unified the concepts of ghost surfaces and quadratic-flux-minimising (QFMin) surfaces. This was based on a simple canonical transformation generated by a change of variable Ξ=Ξ(Θ,ζ)\theta = \theta(\Theta,\zeta), where Ξ\theta and ζ\zeta are poloidal and toroidal angles, respectively, with Θ\Theta a new poloidal angle chosen to give pseudo-orbits that are a) straight when plotted in the ζ,Θ\zeta,\Theta plane and b) QFMin pseudo-orbits in the transformed coordinate. These two requirements ensure that the pseudo-orbits are also c) ghost pseudo-orbits. In the present paper, it is demonstrated that these requirements do not \emph{uniquely} specify the transformation owing to a relabelling symmetry. A variational method of solution that removes this lack of uniqueness is proposed.Comment: 10 pages. Accepted by Plasma Physics and Controlled Fusion as part of a cluster of refereed papers in a special issue containing papers arising from the Joint International Stellarator & Heliotron Workshop and Asia-Pacific Plasma Theory Conference, held in Canberra and Murramarang Resort, Australia, 30 January - 3 February, 201

    Galactic Archaeology and Minimum Spanning Trees

    Get PDF
    Chemical tagging of stellar debris from disrupted open clusters and associations underpins the science cases for next-generation multi-object spectroscopic surveys. As part of the Galactic Archaeology project TraCD (Tracking Cluster Debris), a preliminary attempt at reconstructing the birth clouds of now phase-mixed thin disk debris is undertaken using a parametric minimum spanning tree (MST) approach. Empirically-motivated chemical abundance pattern uncertainties (for a 10-dimensional chemistry-space) are applied to NBODY6-realised stellar associations dissolved into a background sea of field stars, all evolving in a Milky Way potential. We demonstrate that significant population reconstruction degeneracies appear when the abundance uncertainties approach 0.1 dex and the parameterised MST approach is employed; more sophisticated methodologies will be required to ameliorate these degeneracies.Comment: To appear in "Multi-Object Spectroscopy in the Next Decade: Big Questions, Large Surveys and Wide Fields"; Held: Santa Cruz de La Palma, Canary Islands, Spain, 2-6 Mar 2015; ed. I Skillen & S. Trager; ASP Conference Series (Figures now optimised for B&W printing

    Single-level resonance parameters fit nuclear cross-sections

    Get PDF
    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total

    Assembly and force measurement with SPM-like probes in holographic optical tweezers

    Get PDF
    We report a high fidelity tomographic reconstruction of the quantum state of photon pairs generated by parametric down-conversion with orbital angular momentum (OAM) entanglement. Our tomography method allows us to estimate an upper and lower bound for the entanglement between the down-converted photons. We investigate the two-dimensional state subspace defined by the OAM states ±ℓ and superpositions thereof, with ℓ=1, 2, ..., 30. We find that the reconstructed density matrix, even for OAMs up to around ℓ=20, is close to that of a maximally entangled Bell state with a fidelity in the range between F=0.979 and F=0.814. This demonstrates that, although the single count-rate diminishes with increasing ℓ, entanglement persists in a large dimensional state space

    Vortex-type elastic structured media and dynamic shielding

    Full text link
    The paper addresses a novel model of metamaterial structure. A system of spinners has been embedded into a two-dimensional periodic lattice system. The equations of motion of spinners are used to derive the expression for the chiral term in the equations describing the dynamics of the lattice. Dispersion of elastic waves is shown to possess innovative filtering and polarization properties induced by the vortextype nature of the structured media. The related homogenised effective behavior is obtained analytically and it has been implemented to build a shielding cloak around an obstacle. Analytical work is accompanied by numerical illustrations.Comment: 24 pages, 13 figure
    • 

    corecore