675 research outputs found
Optical investigation of thermoelectric topological crystalline insulator PbSnSe
PbSnSe is a novel alloy of two promising thermoelectric
materials PbSe and SnSe that exhibits a temperature dependent band inversion
below 300 K. Recent work has shown that this band inversion also coincides with
a trivial to nontrivial topological phase transition. To understand how the
properties critical to thermoelectric efficiency are affected by the band
inversion, we measured the broadband optical response of
PbSnSe as a function of temperature. We find clear optical
evidence of the band inversion at K, and use the extended Drude
model to accurately determine a dependence of the bulk carrier
lifetime, associated with electron-acoustic phonon scattering. Due to the high
bulk carrier doping level, no discriminating signatures of the topological
surface states are found, although their presence cannot be excluded from our
data.Comment: 11 pages, 6 figure
Vibronic coupling in the superoxide anion: The vibrational dependence of the photoelectron angular distribution
We present a comprehensive photoelectron imaging study of the O₂(X³Σg⁻,v′=0–6)←O₂⁻(X²Πg,v′′=0) and O₂(a¹Δg,v′=0–4)←O₂⁻(X²Πg,v′′=0)photodetachment bands at wavelengths between 900 and 455 nm, examining the effect of vibronic coupling on the photoelectron angular distribution (PAD). This work extends the v′=1–4 data for detachment into the ground electronic state, presented in a recent communication [R. Mabbs, F. Mbaiwa, J. Wei, M. Van Duzor, S. T. Gibson, S. J. Cavanagh, and B. R. Lewis, Phys. Rev. A82, 011401–R (2010)]. Measured vibronic intensities are compared to Franck–Condon predictions and used as supporting evidence of vibronic coupling. The results are analyzed within the context of the one-electron, zero core contribution (ZCC) model [R. M. Stehman and S. B. Woo, Phys. Rev. A23, 2866 (1981)]. For both bands, the photoelectron anisotropy parameter variation with electron kinetic energy,β(E), displays the characteristics of photodetachment from a d-like orbital, consistent with the π∗g 2p highest occupied molecular orbital of O₂⁻. However, differences exist between the β(E) trends for detachment into different vibrational levels of the X³Σg⁻ and a ¹Δg electronic states of O₂. The ZCC model invokes vibrational channel specific “detachment orbitals” and attributes this behavior to coupling of the electronic and nuclear motion in the parent anion. The spatial extent of the model detachment orbital is dependent on the final state of O₂: the higher the neutral vibrational excitation, the larger the electron binding energy. Although vibronic coupling is ignored in most theoretical treatments of PADs in the direct photodetachment of molecular anions, the present findings clearly show that it can be important. These results represent a benchmark data set for a relatively simple system, upon which to base rigorous tests of more sophisticated models.The authors gratefully acknowledge support by the
National Science Foundation Grant No. CHE-0748738 and
ANU ARC Discovery Projects under Grant Nos. DP0666267
and DP0880850
A "circularisation" method to repair deformations and determine the centre of velocity map images
A problem besetting the analysis of velocity map images, particularly those of photoelectrons, is the presence of distortions that cause the features in the image to deviate from circularity, leading to a loss of resolution in the spectrum extracted. A method is presented to repair such distortions based on fitting the angular behaviour of each of the ring structures to a trigonometric expansion. The repair function allows the intensity at any value of radius and angle to be mapped to a new position that removes the distortion and returns the features to circular. While the method relies on the analysis of the structure in an image, it could also be applied to determine the “repair function” using a calibration image (or series of images) for the experiment. Once the image has been circularised it can be processed by any of the approaches that have been developed for that purpose. The analysis also enables the image centre to be determined with high accuracy. The fitting method utilises an inverse Abel transformation of the image in polar coordinates as a means to reshape the image into a series of spectral features in order to determine the radial position of features at each angle. Although the velocity distribution is not in general spherically symmetric and so this is not a mathematically correct means to extract the velocity distribution, the feature positions are accurately reproduced in the resulting spectrum while the intensity and anisotropy parameters can be remarkably close to those obtained using the proper inverse Abel transformation of the imageS.T.G. acknowledges support by the Australian
Research Council Discovery Project Grant No. DP160102585
Development and Validation of a Predictive Model of Acute Glucose Response to Exercise in Individuals With Type 2 Diabetes
Background: Our purpose was to develop and test a predictive model of the acute glucose response to exercise in individuals with type 2 diabetes.
Design and methods: Data from three previous exercise studies (56 subjects, 488 exercise sessions) were combined and used as a development dataset. A mixed-effects Least Absolute Shrinkage Selection Operator (LASSO) was used to select predictors among 12 potential predictors. Tests of the relative importance of each predictor were conducted using the Lindemann Merenda and Gold (LMG) algorithm. Model structure was tested using likelihood ratio tests. Model accuracy in the development dataset was assessed by leave-one-out cross-validation.
Prospectively captured data (47 individuals, 436 sessions) was used as a test dataset. Model accuracy was calculated as the percentage of predictions within measurement error. Overall model utility was assessed as the number of subjects with ≤ 1 model error after the third exercise session. Model accuracy across individuals was assessed graphically. In a post-hoc analysis, a mixed-effects logistic regression tested the association of individuals\u27 attributes with model error.
Results: Minutes since eating, a non-linear transformation of minutes since eating, post-prandial state, hemoglobin A1c, sulfonylurea status, age, and exercise session number were identified as novel predictors. Minutes since eating, its transformations, and hemoglobin A1c combined to account for 19.6% of the variance in glucose response. Sulfonylurea status, age, and exercise session each accounted for \u3c1.0% of the variance. In the development dataset, a model with random slopes for pre-exercise glucose improved fit over a model with random intercepts only (likelihood ratio 34.5, p \u3c 0.001). Cross-validated model accuracy was 83.3%. In the test dataset, overall accuracy was 80.2%. The model was more accurate in pre-prandial than postprandial exercise (83.6% vs. 74.5% accuracy respectively). 31/47 subjects had ≤1 model error after the third exercise session. Model error varied across individuals and was weakly associated with within-subject variability in pre-exercise glucose (Odds ratio 1.49, 95% Confidence interval 1.23-1.75).
Conclusions: The preliminary development and test of a predictive model of acute glucose response to exercise is presented. Further work to improve this model is discussed
Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry
BACKGROUND: Non-typeable H. influenzae (NTHi) is a nasopharyngeal commensal that can become an opportunistic pathogen causing infections such as otitis media, pneumonia, and bronchitis. NTHi is known to form biofilms. Resistance of bacterial biofilms to clearance by host defense mechanisms and antibiotic treatments is well-established. In the current study, we used stable isotope labeling by amino acids in cell culture (SILAC) to compare the proteomic profiles of NTHi biofilm and planktonic organisms. Duplicate continuous-flow growth chambers containing defined media with either “light” (L) isoleucine or “heavy” (H) (13)C(6)-labeled isoleucine were used to grow planktonic (L) and biofilm (H) samples, respectively. Bacteria were removed from the chambers, mixed based on weight, and protein extracts were generated. Liquid chromatography-mass spectrometry (LC-MS) was performed on the tryptic peptides and 814 unique proteins were identified with 99% confidence. RESULTS: Comparisons of the NTHi biofilm to planktonic samples demonstrated that 127 proteins showed differential expression with p-values ≤0.05. Pathway analysis demonstrated that proteins involved in energy metabolism, protein synthesis, and purine, pyrimidine, nucleoside, and nucleotide processes showed a general trend of downregulation in the biofilm compared to planktonic organisms. Conversely, proteins involved in transcription, DNA metabolism, and fatty acid and phospholipid metabolism showed a general trend of upregulation under biofilm conditions. Selected reaction monitoring (SRM)-MS was used to validate a subset of these proteins; among these were aerobic respiration control protein ArcA, NAD nucleotidase and heme-binding protein A. CONCLUSIONS: The present proteomic study indicates that the NTHi biofilm exists in a semi-dormant state with decreased energy metabolism and protein synthesis yet is still capable of managing oxidative stress and in acquiring necessary cofactors important for biofilm survival. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12866-014-0329-9) contains supplementary material, which is available to authorized users
- …