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RESEARCH ARTICLE Open Access

Comparative analyses of proteins from
Haemophilus influenzae biofilm and planktonic
populations using metabolic labeling and mass
spectrometry
Deborah MB Post1, Jason M Held2, Margaret R Ketterer3, Nancy J Phillips4, Alexandria Sahu1,
Michael A Apicella3 and Bradford W Gibson1,4*

Abstract

Background: Non-typeable H. influenzae (NTHi) is a nasopharyngeal commensal that can become an opportunistic
pathogen causing infections such as otitis media, pneumonia, and bronchitis. NTHi is known to form biofilms.
Resistance of bacterial biofilms to clearance by host defense mechanisms and antibiotic treatments is well-established.
In the current study, we used stable isotope labeling by amino acids in cell culture (SILAC) to compare the proteomic
profiles of NTHi biofilm and planktonic organisms. Duplicate continuous-flow growth chambers containing defined
media with either “light” (L) isoleucine or “heavy” (H) 13C6-labeled isoleucine were used to grow planktonic (L) and
biofilm (H) samples, respectively. Bacteria were removed from the chambers, mixed based on weight, and protein
extracts were generated. Liquid chromatography-mass spectrometry (LC-MS) was performed on the tryptic peptides
and 814 unique proteins were identified with 99% confidence.

Results: Comparisons of the NTHi biofilm to planktonic samples demonstrated that 127 proteins showed differential
expression with p-values ≤0.05. Pathway analysis demonstrated that proteins involved in energy metabolism, protein
synthesis, and purine, pyrimidine, nucleoside, and nucleotide processes showed a general trend of downregulation in
the biofilm compared to planktonic organisms. Conversely, proteins involved in transcription, DNA metabolism, and
fatty acid and phospholipid metabolism showed a general trend of upregulation under biofilm conditions. Selected
reaction monitoring (SRM)-MS was used to validate a subset of these proteins; among these were aerobic respiration
control protein ArcA, NAD nucleotidase and heme-binding protein A.

Conclusions: The present proteomic study indicates that the NTHi biofilm exists in a semi-dormant state with
decreased energy metabolism and protein synthesis yet is still capable of managing oxidative stress and in acquiring
necessary cofactors important for biofilm survival.

Keywords: Non-typeable Haemophilus influenzae, Metabolic labeling, Biofilms, Mass spectrometry

Background
Non-typeable Haemophilus influenzae (NTHi) is a
Gram-negative organism that is a typical component of the
normal human nasopharyngeal flora. Under certain condi-
tions, this bacterium can also be an opportunistic pathogen
causing upper and lower respiratory tract infections such

as otitis media, pneumonia, and bronchitis [1-4]. Infants,
young children, the elderly, and persons suffering from
chronic obstructive pulmonary disease (COPD) are the
most common populations impacted by these opportunis-
tic infections [1,4,5].
H. influenzae is able to form biofilms under both

in vitro and in vivo conditions [6-12]. These biofilms are
bacterial communities that exhibit characteristics which
differentiate them from planktonic organisms [13]. One
of these unique biofilm characteristics is resistance to
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clearance by antibiotics and the immune system [13-16].
This resistance is most likely responsible for the recur-
rent infections sometimes seen with H. influenzae
[17-19]. The generation of a biofilm matrix is also a typ-
ical characteristic of a biofilm [20]. The H. influenzae
biofilm matrix has been shown to consist of a number of
components including double-stranded DNA, type IV
pilin protein and sialylated lipooligosaccharide (LOS)
[6,10,21-25]. The biofilm matrix typically generates an
oxygen depleted environment within the biofilm and at
its base. Nutrients are transported from the outer per-
iphery of the matrix to its lower layers through nutrient
channels. This matrix most likely plays a role in resist-
ance to host defenses and antimicrobial therapies.
Several studies have been conducted to examine the

components of the H. influenzae biofilm matrix, but to
date no study has been initiated to examine the differ-
ences between the proteomic profiles of H. influenzae
biofilm and planktonic bacteria. In the present study we
utilize stable isotope labeling of amino acids in cell culture
(SILAC) combined with mass spectrometry [26-28] to
compare proteins expressed in biofilm and planktonic bac-
teria. Our group and others have successfully utilized
SILAC to compare bacterial populations grown under dif-
fering conditions [29-33]. SILAC incorporates an amino
acid labeled with a heavy stable isotope into one popula-
tion; following proteolytic digestion, any peptides con-
taining the labeled amino acid are then shifted by a
specific mass. This mass shift allows one to directly
compare the protein levels of the two test populations
upon mixing and subsequent LC/MS analysis. In the
present study, 13C6-isoleucine was incorporated into
biofilm-grown H. influenzae. These bacteria were com-
pared to planktonic H. influenzae grown in normal isoleu-
cine. These populations were subsequently compared
using both MS/MS analyses as well as selected reaction
monitoring (SRM)-MS analyses. Mass spectrometry-based
proetomic analyses enabled us to generate a list of pro-
teins of interest. Targeted quantitative analyses of a subset
of these proteins were subsequently performed using
SRM-MS.

Methods
Bacterial strains and growth conditions
The previously isolated non-typeable H. influenzae strain
2019 was utilized for all studies [34]. Bacteria were
grown on agar culture plates made with defined RPMI
medium, containing either normal isoleucine (planktonic
cultures) or with heavy 13C6-labeled isoleucine (biofilm
cultures) (Cambridge Isotope Labs, Andover, MA). In-
oculation samples were grown in liquid defined RPMI
medium, containing the same isoleucine as the plate cul-
tures. Biofilm and planktonic organisms were grown in
specially designed biofilm growth chambers, which were

set-up as previously described except glass beads were
used instead of granite pieces [35]. Two large growth
chambers were set-up using the appropriate form of iso-
leucine, and after three days of growth, the planktonic
bacteria (“light”) were collected from the liquid media
from one chamber, and the biofilm growth (“heavy”) was
collected from the glass beads of the other chamber
(Figure 1).
Confirmation that the bacteria grew as a biofilm on the

glass beads was obtained using scanning electron micros-
copy (Figure 1). Samples were prepared by lifting the beads
carefully out of the chamber and gently immersing them in
a solution of 1% OsO4 in perfluorocarbon (Fluorinert FC-
72 from 3 M Specialty Fluids, St. Paul, MN). The samples
were held stationary in this solution at room temperature
for 3 h, and then washed in 3 changes of perfluoro-
carbon, followed by dehydration in 100% ethanol and
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Figure 1 Schematic illustrations of the continuous-flow growth
chambers used to grow the (A) biofilm and (B) planktonic
organisms. The biofilm (“B”) organisms were grown with “heavy”
13C6-Isoleucine and the planktonic organisms (“P”) were grown with
unlabeled or “light” isoleucine. The inserted micrograph in panel (A)
is a scanning electron microscopy image showing a typical biofilm
from these growth chambers.
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final clearance in hexamethyl-disilazane (Polysciences,
Inc., Warrington, PA). The beads were mounted on Al
stubs, sputter-coated with Au-Pd, and viewed with the
Hitachi S4800 scanning electron microscope, housed at
the University of Iowa Central Microscopy Research
Facility, at an accelerating voltage of 2.0 kV.

Protein sample preparation
Biofilm and planktonic organisms were lyophilized to dry-
ness, weighed, and combined at a ratio to yield equivalent
levels of total protein (2:1, biofilm:planktonic). As can be
seen in Figure 2, sequential protein extracts were gener-
ated using the Bio-Rad Ready Prep Sequential extraction
kit (Bio-Rad, Hercules, CA) which generates three sequen-
tial protein fractions: soluble, urea-soluble, and SDS-
soluble. Bacteria were suspended in 40 mM Tris, sonicated
five times for 30 sec each with 1 min rest intervals on ice,
and centrifuged at 16,000 × g for 3 min. The supernatant of
this was designated “extract one”, the soluble extract. The
pellet was suspended in 8 M urea, 4% CHAPS, and 12 mM
tributyl phosphine and was subsequently centrifuged. The
supernatant from this was designated “extract two” (urea
soluble fraction). The insoluble pellet was washed twice,
suspended in 2% SDS, boiled for 10 min, and designated
“extract three” (SDS soluble fraction). The amount of pro-
tein in each extract was determined and 60 μg of protein
from each extract was loaded into separate lanes of a 4-12%
SDS-PAGE gel (NuPage, Life Technologies, Carlsbad, CA).
Samples were run 2 cm into the gel and visualized with
Simply Blue Safe Stain (Life Technologies), and manual in-
gel trypsin digestion was performed. Proteins were excised
(5–6 bands excised per extract) from the gels and destained

and dehydrated with acetonitrile (50% acetonitrile/ 25 mM
NH4HCO3). Proteins were reduced with 10 mM DTT in
25 mM NH4HCO3 for 1 h at 56°C and subsequently alky-
lated with 55 mM iodoacetamide for 45 min at room
temperature. Proteins were digested with trypsin using a
trypsin concentration of 1:20 (trypsin:protein) for 16–18 h
at 37°C. Peptides were first extracted with water and subse-
quently with 50% acetonitrile/5% formic acid. Samples were
concentrated under vacuum to a final volume of 5–10 μl.
Approximately 5–10 μl of 5% acetonitrile/0.5% formic acid
was added to the samples to achieve a final volume of
15 μl.

MALDI-TOF analyses
To assess proper incorporation of the heavy-labeled iso-
leucine, peptide samples were initially evaluated by
matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) mass spectrometry on a Voyager DE-STR
mass spectrometer (AB Sciex, Concord, Canada) operating
in the positive-ion reflectron mode under delayed extrac-
tion conditions: 200 ns delay time, with a grid voltage of
66.5% of full acceleration voltage (25 kV). Samples were
mixed 1:1 with α-cyano-4-hydroxycinnamic acid (CHCA)
matrix and spotted onto a stainless steel target. Mass spec-
tra were acquired, averaged (typically 100 laser shots), and
externally calibrated with a standard peptide mixture con-
sisting of angiotensin I, and ACTH fragments 1–17, 18–39,
and 7–38 (Bachem, Torrance, CA).

Nano-LC-ESI MS/MS analyses
To compare the relative expression levels of proteins be-
tween the biofilm and planktonic populations, peptides
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Figure 2 Workflow of sample preparation and analyses. (A) Three sequential extracts were generated in 3 biological replicates and (B) were
further separated by SDS-PAGE to enhance protein identification and quantification coverage. The data obtained from the LC/MS experiments
(2 injections replicates per sample) were combined for each biological replicate and searched using Protein Pilot.
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generated after proteolytic digestion of all three extracts
were analyzed by reverse-phase nano-HPLC-MS/MS
using an Eksigent nano-LC 2D HPLC system that was
directly connected to a quadropole-TOF mass spectrom-
eter (QSTAR Elite, AB Sciex, Concord, Canada). Pep-
tides were loaded onto a guard column (C18 Acclaim
PepMap100, 300 μm I.D. × 5 mm, 5 μm particle size,
100 Å pore size, Dionex, Sunnyvale, CA) and washed
with loading solvent for 10 min (98% solvent A, 2% solv-
ent B, where solvent A is 0.1% formic acid in 98% H2O,
2% acetonitrile and solvent B is 0.1% formic acid in 98%
acetonitrile, 2% H2O) at a flow rate of 20 μl/min. Sam-
ples were then transferred onto a C18 nano-HPLC ana-
lytical column (C18 Acclaim PepMap100, 75 μm I.D. ×
15 cm, 3 μm particle size, 100 Å pore size, Dionex) and
eluted at a flow rate of 300 nL/min using either an ~2 h
(extracts 2 and 3) or an ~3 h gradient (extract 1). The
gradient for the 2 h runs was: 2-40% solvent B in A
(from 0–60 min), 40-90% solvent B in A (from 60–
75 min) and 90% solvent B in A (from 74–85 min), for a
total of 120 min including column equilibration. The
gradient for the 3 h runs was: 98% solvent A in B (from
0–5 min), 2-40% solvent B in A (from 5–125 min), 40-
90% solvent B in A (from 125–140 min), and 90% solv-
ent B in A (from 140–149 min) for a total of 180 min
including column equilibration. Electrospray ionization
mass spectra (ESI-MS) and tandem mass spectra (ESI-MS/
MS) were recorded in positive-ion mode with a resolution
of 12,000-15,000 FWHM. An ion spray voltage of 2300 V,
curtain gas of 20 psi, ion source gas of 17 psi, and an inter-
face heater temperature of 100°C were used for acquisition
of the data. For collision induced dissociation tandem mass
spectrometry (CID-MS/MS), the mass window for precur-
sor ion selection of the quadrupole mass analyzer was set
to ± 1m/z. Information dependent acquisition was utilized
for MS/MS data acquisition. Two injection replicates were
run for all samples.

Data analyses of ESI-MS and MS/MS data
All files generated from the QSTAR Elite were analyzed
using Protein Pilot 4.1 (revision 460) running the Paragon
Algorithm 4.0.0.0, 459 (Applied Biosystems) [36] with a
custom database consisting of the predicted protein se-
quences from H. influenzae strain 86-028NP [37]. Search
parameters included: sample type was defined as SILAC
(Ile + 6), Cys alkylation method was iodoacetamide, instru-
ment type was QSTAR ESI, and trypsin was the proteo-
lytic enzyme. A “thorough search” was then performed
with both ‘quantitate’ and ‘bias correction’ features se-
lected. Imperfect 1:1 mixing of the samples was corrected
for in the dataset by this bias correction factor, so reported
H:L ratios were normalized allowing direct comparisons
to be made between datasets. False Discovery Rate Ana-
lysis (FDR) was performed using the default setting for the

“detected protein threshold [Ununsed ProtScore (Conf)]”
at >0.05 (10.0%). The Proteomics System Performance
Evaluation Pipeline (PSPEP) tool was used to generate the
FDR analyses using a concatenated forward and reverse
decoy database to search the data. The output from this
analysis shows the FDR at the spectral, peptide and
protein levels [38]. In the present study, we included in
our datasets only proteins with an “Unused ProtScore”
of ≥2.0, which corresponds to a protein confidence
cut-off threshold of 99%. At this protein confidence
threshold, the protein global false discovery rate (FDR)
from fit of the data was 0.0048% or lower in all of the
proteomics datasets. The default setting of “Confidence
Percent Threshold for Including Self In Quant” within the
“ProteinPilot.exe.config” file was changed from 15% to
50%, thus only peptides with a confidence score of at least
50% were used to derive the H:L ratios for protein
quantitation.
All of the output ratios for the quantitative SILAC re-

sults were expressed as H:L or biofilm:planktonic (B:P).
Only quantified proteins with at least two peptides iden-
tified and overall p-values ≤0.05 were included in our
final datasets of the differentially expressed proteins, a
fold-change threshold was not applied to the data. Pre-
dicted protein roles were determined using the role
identification tool from the J. Craig Venter Institute
Comprehensive Microbial Resource website (http://cmr.
jcvi.org/cgi-bin/CMR/CmrHomePage.cgi) [39]. In a few
cases this search generated a predicted protein role as
“unknown”. These proteins were further investigated
using the “protein knowledgebase (UniProtKB)” from
the UniProt website (http://www.uniprot.org/) [40], and
if further information was obtained, the role was chan-
ged appropriately. Protein localization was predicted
using the web-based version of the PSORTb tool version
3.0.2 (http://www.psort.org/psortb/index.html) [41].

LC-SRM/MS
To increase selectivity and sensitivity of our differential
measurements, a select group of peptides were targeted
for analysis by nano-LC-SRM/MS on a 4000 QTRAP hy-
brid triple quadrupole/linear ion-trap mass spectrometer
(AB Sciex). Chromatography was performed using a
NanoLC-2D LC system (Eksigent, Dublin, CA) with so-
lution A (0.1% formic acid) and solution B (90% aceto-
nitrile in 0.1% formic acid). Samples were loaded onto a
trap column at 5 μl/min onto a 5 mm × 300 μm reversed
phase Dionex C18 trap column (5 μm, 100 Å) for 10 min
and eluted at 300 nL/min with a gradient of 2-70% solu-
tion B over 32 min using an in-house packed Integrafrit
analytical column (75 μm I. D., New Objective, Woburn,
MA) with 10–12 cm of ReproSil-Pur C18-AQ 3 μm re-
versed phase resin (Dr. Maisch GmbH, Germany). Pep-
tides were ionized using a PicoTip emitter (75 μm, 15 μm
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tip, New Objective). Data acquisition was performed using
Analyst 1.5 (AB Sciex) with an ion spray voltage of
2450 V, curtain gas of 10 psi, nebulizer gas of 20 psi, and
an interface heater temperature of 150°C. To develop
SRM transitions, data files from the QSTAR Elite runs
were imported into the publicly available software Skyline.
A detailed description of the software is described else-
where [42,43]. SRM transitions were selected from pro-
teins predicted to have differential expression between the
biofilm and planktonic samples. In total, 368 transitions
were analyzed in a single LC-SRM/MS analysis with iden-
tical dwell times, collision energies, declustering potentials
and collision cell exit potentials for each pair of labeled
and unlabeled peptides. All of the soluble extract fractions
from all of the biological replicates were analyzed by SRM,
except one fraction from experiment #2 because the sam-
ple was lost due to technical difficulties. Skyline software
was utilized for data analyses. The data from the strongest
fraction and the best transition was extracted from Skyline
and analyzed. Observed peptides needed to have relatively
consistent retention times across the various biological rep-
licates and between the “heavy” and “light” versions of the
peptide and they also needed to have a signal to noise ratio
of at least 2:1 to be included in our dataset. The observed
bias factor for each biological replicate was applied to the
data extracted from the best transition. Average ratios were
calculated by converting ratios to log2, averaging and then
converting these results back to normal numbers.

Data accession
All raw data associated with this manuscript may be
downloaded from the massIVE ftp site at ftp://
MSV000078838@massive.ucsd.edu [44].

Results
Sample preparation
RPMI media supplemented with either normal isoleu-
cine (“light”) or 13C6-isoleucine (“heavy”) was used to
culture the planktonic and biofilm organisms, respectively.
Both samples were prepared utilizing large growth cham-
bers as shown in Figure 1. The presence of a typical bio-
film on the glass beads was confirmed using scanning
electron microscopy. For sample collection, biofilm organ-
isms were washed from the glass beads, rinsed with PBS,
and lyophilized to dryness. Planktonic organisms were col-
lected from the supernatant of the biofilm chamber, rinsed
with PBS, and lyophilized to dryness. The lyophilized sam-
ples were initially mixed 1:1 based on dry weight. Proteo-
lytic peptides from this 1:1 sample were generated as
described above, and subsequently analyzed using LC-MS.
The bias factor feature of Protein Pilot, which measures
how accurate the sample mixing is to 1:1, when all pep-
tides containing isoleucine are compared, was utilized to
determine how close to a 1:1 protein mix was actually

obtained. The derived bias factor from this initial dataset
was 0.57 (biofilm:planktonic), indicating that our samples
contained twice as much proteins from the planktonic or-
ganisms than from the biofilm. This disproportionate mix-
ing was expected as it is known that biofilm organisms
generate an extracellular matrix which the planktonic or-
ganisms do not make. Therefore, in subsequent experi-
ments we mixed the samples 2:1 (biofilm:planktonic) by
weight, to yield a more comparable level of proteins be-
tween the two states.
To determine the efficiency of the label incorporation

into the biofilm samples, equivalent amounts of biofilm
and planktonic samples were separated by 1-D SDS-PAGE,
individual bands extracted, trypsin digestion performed,
and the samples analyzed by MALDI-TOF. The 13C6-
isoleucine utilized to label the biofilm organisms was
purported by the manufacturer to have 98% labeling effi-
ciency. The isotopic distributions from two representative
isoleucine-containing peptides from two different proteins
were used to determine incorporation efficiency. The peak
intensities from 10 different spectra, of each peptide, were
averaged and compared to MS-Isotope’s (Protein
Prospector web-based tool, University of California, San
Francisco Mass Spectrometry Facility) predicted iso-
topic distribution of the peptide. These data showed
that the predicted incorporation of the “heavy” isoleu-
cine was 97.5%. These data demonstrated that the 13C6-
Ile was properly and efficiently incorporated into the
biofilm proteins. In addition, peptides without isoleucine
showed no evidence of altered isotopic composition, dem-
onstrating that the label had not been catabolized into
other amino acids.

LC-ESI-MS/MS data
To reduce the complexity of the mixed samples and in-
crease coverage, three extracts were generated based on
protein solubility (Figure 2). Each extract was briefly
separated by SDS-PAGE, and then an in-gel trypsin di-
gest was performed. Samples were prepared from three
biological replicates and were analyzed by nano-LC-ESI
MS/MS. Injection replicates were run for all samples. All
of the data generated from a biological replicate was
searched using Protein Pilot, which also determined the
bias factor for each experiment. As stated previously, a
perfect 1:1 mix of the “heavy” and “light” samples would
generate a bias factor of 1. Protein Pilot determined that
our experiments had bias factors of 0.986, 1.2277, and
1.0219 in biological replicates 1, 2, and 3 respectively.
These data showed that we had achieved a reasonable
mix of our biofilm and planktonic populations in each of
the biological replicates, an important parameter for effi-
cient matching and accurate quantitation of peptides
from the two groups.
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Overall 814 unique proteins were identified with 99%
confidence and at least two peptides at 95% confidence,
corresponding to ~45% of the total proteome (Additional
file 1). In biological replicate one, 721 proteins were iden-
tified with 99% confidence and at least two peptides at
95% confidence (Additional file 2). Of these proteins, 33
proteins showed an upward trend in the biofilm samples
while 35 proteins showed evidence of downregulation
(Additional files 3 and 4). For biological replicate two, 723
proteins were identified with 99% confidence and at least
two peptides at 95% confidence (Additional file 5), of
these 11 appeared to be upregulated in the biofilm and
13 downregulated (Additional files 6 and 7). 668 pro-
teins were identified with 99% confidence and at least
two peptides at 95% confidence in biological replicate
three (Additional file 8), with 21 proteins identified as
being upregulated and 43 downregulated in the biofilm
(Additional files 9 and 10). Comparison of the data from
the three different biological replicates showed that 127
unique proteins were differentially expressed in the bio-
film versus planktonic organisms (Table 1), correspond-
ing to ~ 7% of the total proteome. Two proteins were
found to be differentially expressed in all three bio-
logical replicates, while four were common between
replicates #1 and #2, and twenty-three proteins were
common between experiments #1 and #3. Four differen-
tially expressed proteins were found to be in common
between experiments #2 and #3. In total, we observed
27 proteins that were consistently up or down-regulated
between two or more biological replicates (Table 1), and
five proteins that showed conflicting trends between
two biological replicates and were therefore not investi-
gated further (Additional file 11).
When the functional roles of the 127 proteins that

showed differential expression between the biofilm sam-
ples and the planktonic organisms were examined, a
number of key processes were identified (Figure 3). A
trend towards downregulation was seen in proteins in-
volved in energy metabolism, protein synthesis, and pur-
ine, pyrimidine, nucleoside, and nucleotide processes.
Analysis of the data showed that 76% of the proteins
(19/25 proteins) involved in energy metabolism showed a
downward trend in the biofilm population. Further meta-
bolic pathway analysis was performed on the proteins in-
volved in energy metabolism using the KEGG website
[45]. These analyses showed that a number of these pro-
teins could be mapped to the pyruvate metabolism, gly-
colysis and pentose phosphate pathways (Additional files
12, 13 and 14). These data also showed that 71% (17/24
proteins) of the proteins involved in protein synthesis and
identified as having differential protein expression were
downregulated. All six of the proteins classified as being
involved in purine, pyrimidine, nucleoside, and nucleotide
processes, which were identified as being differential

expressed in this study, showed a trend towards downreg-
ulation. Conversely, proteins involved in transcription,
DNA metabolism, and fatty acid and phospholipid metab-
olism appeared to have an increased expression level in
the biofilm. 83.3% (5/6) of the proteins identified as being
involved in transcription were upregulated in the biofilm.
All three of the proteins classified in fatty acid and
phospholipid metabolism showed higher expression levels
in the biofilm bacteria than the planktonic organisms.
87.5% or 7/8 of the proteins classified as DNA metabolism
proteins were upregulated in the biofilm bacteria.

LC-SRM/MS data
To obtain better sensitivity and accuracy in the relative
quantitation of some of the more important proteins
identified in the global SILAC analysis, SRM-MS was
performed. Proteins were selected from the list of differ-
entially expressed proteins observed in the ESI-MS/MS
analyses; additionally proteins of potential biological sig-
nificance were also targeted in these analyses. Peptides
observed from this set of proteins were refined to in-
clude only peptides which contained no methionine or
cysteine residues, no missed cleavages, no N-terminal
glutamine or glutamic acid, and no adjacent tryptic sites.
Nineteen proteins with at least one peptide which met the
above criteria were analyzed by SRM-MS to examine
whether the biofilm and planktonic samples were differen-
tially expressed. Data for both the “heavy” and “light” popu-
lations was collected for 54 of the targeted 61 peptides
(Additional file 15). Figure 4, Table 2, and Additional file 16
show the data from 10 of the 19 proteins that we obtained
consistent quantitative results to those observed in our ini-
tial Protein Pilot analysis of the MS/MS data. The 9
remaining proteins had data that was either inconclusive or
was inconsistent with our initial MS/MS dataset and thus
were not confirmed by SRM analyses. Of the 10 proteins
that were confirmed by SRM analyses, four showed down-
regulation and six showed upregulation in the biofilm sam-
ples compared to the planktonic samples, with all six of the
upregulated proteins showing an average peptide ratio
of >1.5 and one of the downregulated proteins showing an
average peptide ratio of <0.66. The cysteinyl-tRNA synthe-
tase protein, aerobic respiration control protein ArcA, the
predicted regulator of cell mophogenesis and NO signaling
protein, and the molybdate-binding periplasmic protein
were all seen as downregulated in the biofilm. The NAD
nucleotidase protein, the heme-binding protein A, the glu-
tamine synthetase protein, the protective surface antigen
D15 protein, the probable acyl carrier protein phospho-
diesterase, and the DNA gyrase protein subunit A were all
found by SRM to be upregulated in the biofilm. One to five
distinct peptides were used to target each protein in our
multiplexed SRM-MS assays (Additional file 16). Of all of
the proteins quantified by SRM, the aerobic respiration
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Table 1 Proteins Predicted to be up- or downregulated, by Protein Pilot, with p values ≤ 0.05
1Biofilm: Planktonic ratio

Accession # Protein name Rep. 1 Rep. 2 Rep. 3 2Localization

Amino acid biosynthesis

AAX87912.1 glutamine synthetase, GlnA 1.71 1.88 Cytoplasmic

AAX87713.1 ketol-acid reductoisomerase, IlvC 1.26 Cytoplasmic

AAX87519.1 D-3-phosphoglycerate dehydrogenase, SerA 0.54 Cytoplasmic

AAX87314.1 dihydrodipicolinate synthase, DapA 0.66 Cytoplasmic

Biosynthesis of cofactors, prosthetic groups, and carriers

AAX87263.1 NAD nucleotidase, NadN 2.47 1.62 1.23 Periplasmic

AAX87920.1 octaprenyl-diphosphate synthase, IspB 0.71 Cytoplasmic

AAX87900.1 putative heme iron utilization protein 0.82 Cytoplasmic

Cell envelope

AAX88031.1 transferrin-binding protein 1, Tbp1 1.86 OMP

AAX87746.1 VacJ lipoprotein 1.58 OMP

AAX87040.1 rod shape-determining protein MreB 1.41 Cytoplasmic

AAX88649.1 acylneuraminate cytidylyltransferase, SiaB 0.70 Cytoplasmic

AAX88164.1 Outer membrane protein P5 0.58 OMP

Cellular processes

AAX88712.1 predicted periplasmic or secreted lipoprotein 1.57 Periplasmic

AAX87955.1 protective surface antigen D15 1.44 OMP

AAX88561.1 cell division protein MukB 1.18 Unknown

AAX88143.1 cell division protein FtsA 0.76 Cytoplasmic

AAX87967.1 catalase, HktE 0.76 Periplasmic

Central intermediary metabolism

AAX87206.1 putative sialic acid transporter, TRAP-type C4-dicarboxylate
transport system, periplasmic component, SiaP

0.67 0.63 Periplasmic

DNA metabolism

AAX87735.1 DNA mismatch repair protein MutS 2.91 Cytoplasmic

AAX88107.1 DNA ligase, LigN 2.26 Cytoplasmic

AAX88664.1 transcription-repair coupling factor, Mfd 1.48 Cytoplasmic

AAX88280.1 DNA-binding protein H-NS homolog 1.40 Cytoplasmic

AAX88572.1 DNA topoisomerase I, TopA 1.38 Cytoplasmic

AAX87482.1 DNA-binding protein HU 1.31 Cytoplasmic

AAX87308.1 UvrABC system protein A 1.28 Cytoplasmic

AAX88029.1 DNA polymerase III, beta chain, DnaN 0.81 Cytoplasmic

Energy metabolism

AAX87718.1 glycerophosphoryl diester phosphodiesterase precursor, Glp 1.51 1.89 Unknown

AAX88650.1 putative NAD(P)H nitroreductase, NsfB 1.80 Unknown

AAX87025.1 citrate lyase alpha chain, citF 1.38 1.71 Cytoplasmic

AAX88575.1 NAD(P) transhydrogenase subunit alpha, PntA 1.43 1.62 Cyto. Memb.

AAX88675.1 NADP-dependent malic enzyme, Mao2 1.56 Cytoplasmic

AAX88704.1 D-lactate dehydrogenase, Dld 1.26 Cyto. Memb.

AAX88019.1 6-phosphofructokinase, PfkA 0.52 Cytoplasmic

AAX87882.1 fumarate reductase flavoprotein subunit, FrdA 0.54 Cyto. Memb.

AAX88128.1 transaldolase, TalB 0.55 Unknown
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Table 1 Proteins Predicted to be up- or downregulated, by Protein Pilot, with p values ≤ 0.05 (Continued)

AAX87573.1 fructose-bisphosphate aldolase, Fba 0.73 0.55 Cytoplasmic

AAX88202.1 acetate kinase, AckA 0.70 0.55 Cytoplasmic

AAX88159.1 thioredoxin reductase, TrxB 0.56 Cytoplasmic

AAX87856.1 phosphoenolpyruvate carboxykinase, PckA 0.57 Cytoplasmic

AAX88535.1 fumarate hydratase class II, FumC 0.59 Cytoplasmic

AAX87709.1 triosephosphate isomerase, TpiA 0.64 Cytoplasmic

AAX88580.1 1,4-alpha-glucan branching enzyme, GlgB 0.66 Cytoplasmic

AAX88208.1 malate dehydrogenase, Mdh 0.66 Unknown

AAX87248.1 flavodoxin, FldA 0.68 Cytoplasmic

AAX87583.1 aspartate ammonia-lyase, AspA 0.70 Cytoplasmic

AAX87004.1 glyceraldehyde 3-phosphate dehydrogenase, GapA 0.70 0.78 Cytoplasmic

AAX88293.1 pyruvate kinase, PykA 0.72 Cytoplasmic

AAX87574.1 phosphoglycerate kinase, Pgk 0.75 Cytoplasmic

AAX87971.1 enolase, Eno 0.77 0.81 Cytoplasmic

AAX88160.1 thioredoxin domain-containing protein, YbbN 0.78 Cytoplasmic

AAX87237.1 formate acetyltransferase, PflB 0.79 Cytoplasmic

Fatty acid and phospholipid metabolism

AAX87797.1 glycerol-3-phosphate acyltransferase, PlsB 1.50 Cyto. Memb.

AAX87445.1 long-chain-fatty-acid–CoA ligase, LcfA 1.60 Cyto. Memb.

AAX88571.1 probable acyl carrier protein phosphodiesterase, AcpD 1.50 Cytoplasmic

Hypothetical proteins

AAX87451.1 conserved hypothetical cupin superfamily metalloenzyme 1.36 Cytoplasmic

AAX88259.1 conserved hypothetical phosphate transport regulator 0.65 Cytoplasmic

AAX87425.1 conserved hypothetical protein 0.73 Unknown

AAX88050.1 conserved hypothetical protein 0.80 Cytoplasmic

Protein fate

AAX87914.1 peptidase B, pepB 1.52 Cytoplasmic

AAX87592.1 60 kDa chaperonin, GroEL 1.52 Cytoplasmic

AAX87863.1 Xaa-Pro aminopeptidase, PepP 1.51 Cytoplasmic

AAX88683.1 chaperone protein DnaK 1.42 Cytoplasmic

AAX87793.1 protein-export protein SecB 1.41 Cytoplasmic

AAX87272.1 oligopeptidase A, PrlC 1.37 1.28 Cytoplasmic

AAX87706.1 aminoacyl-histidine dipeptidase, PepD 1.32 Cytoplasmic

AAX87591.1 10 kDa chaperonin, GroES 0.42 Cytoplasmic

AAX87652.1 peptidase E, PepE 0.52 Cytoplasmic

AAX87816.1 cell division protein FtsY 0.56 Cytoplasmic

AAX88211.1 thiol:disulfide interchange protein DsbC 0.58 Periplasmic

AAX87741.1 trigger factor, Tig 0.64 Cytoplasmic

AAX88760.1 cytosol aminopeptidase, PepA 0.72 Cytoplasmic

Protein synthesis

AAX88424.1 phenylalanyl-tRNA synthetase beta chain, PheT 2.11 Cytoplasmic

AAX87782.1 prolyl-tRNA synthetase, ProS 2.00 Cytoplasmic

AAX87660.1 30S ribosomal protein S7, RpsG 1.81 Cytoplasmic

AAX87825.1 50S ribosomal protein L3, RplC 1.53 Cytoplasmic

AAX87593.1 50S ribosomal protein L9, RplI 1.31 Cytoplasmic
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Table 1 Proteins Predicted to be up- or downregulated, by Protein Pilot, with p values ≤ 0.05 (Continued)

AAX88652.1 methionyl-tRNA synthetase, MetG 1.29 Cytoplasmic

AAX87177.1 Seryl-tRNA synthetase, SerS 1.25 Cytoplasmic

AAX87580.1 30S ribosomal protein S21, RpsU 0.49 Cytoplasmic

AAX87839.1 30S ribosomal protein S14, RpsN 0.47 Cytoplasmic

AAX87952.1 elongation factor Ts 0.59 0.58 Cytoplasmic

AAX87661.1 elongation factor G, FusA 0.61 0.76 Cytoplasmic

AAX87855.1 ribosome recycling factor, Frr 0.68 0.73 0.62 Cytoplasmic

AAX87080.1 cysteinyl-tRNA synthetase, CysS 0.62 Cytoplasmic

AAX88252.1 tyrosyl-tRNA synthetase, TyrS 0.63 Cytoplasmic

AAX87851.1 50S ribosomal protein L17, RplQ 0.66 Cytoplasmic

AAX87670.1 50S ribosomal protein L10, RplJ 0.67 Cytoplasmic

AAX87910.1 GTP-binding protein TypA/ BipA 0.68 Cyto. Memb.

AAX87836.1 50S ribosomal protein L14, RplN 0.71 Cytoplasmic

AAX87838.1 50S ribosomal protein L5, RplN 0.74 Cytoplasmic

AAX88285.1 arginyl-tRNA synthetase, ArgS 0.74 Cytoplasmic

AAX87448.1 predicted GTPase, probable translation factor 0.74 Cytoplasmic

AAX87662.1 elongation factor Tu, TufB 0.80 0.81 Cytoplasmic

AAX88543.1 valyl-tRNA synthetase, ValS 0.83 Cytoplasmic

AAX87376.1 aspartyl-tRNA synthetase, AspS 0.85 Cytoplasmic

Purines, pyrimidines, nucleosides, and nucleotides processes

AAX87406.1 adenylate kinase, Adk 0.55 0.66 Cytoplasmic

AAX88253.1 Ribose-phosphate pyrophosphokinase, PrsA 0.57 0.80 Cytoplasmic

AAX87655.1 2’,3’-cyclic-nucleotide 2’-phosphodiesterase, CpdB 0.78 0.61 Periplasmic

AAX88085.1 CTP synthase, PyrG 0.62 Cytoplasmic

AAX87567.1 Purine nucleoside phosphorylase, DeoD 0.65 Cytoplasmic

AAX87928.1 Serine hydroxymethyltransferase, GlyA 0.75 Cytoplasmic

Regulatory functions

AAX87211.1 HflK 1.36 Cytoplasmic

AAX87210.1 HflC 1.22 Cytoplasmic

AAX87923.1 aerobic respiration control protein ArcA 0.37 0.35 Cytoplasmic

Transcription

AAX88453.1 transcription elongation factor GreA 1.60 Cytoplasmic

AAX88611.1 transcription elongation protein NusA 1.44 Cytoplasmic

AAX87564.1 DNA-directed RNA polymerase beta chain, RpoB 1.17 1.32 Cytoplasmic

AAX87290.1 polyribonucleotide nucleotidyltransferase, Pnp 1.17 1.18 Cytoplasmic

AAX87467.1 ribonuclease E, Rne 1.14 Cytoplasmic

AAX87292.1 Cold-shock DEAD-box protein A homolog, DeaD 0.52 Cytoplasmic

Transport and binding proteins

AAX88593.1 spermidine/putrescine-binding periplasmic protein 1 precursor, PotD1 2.04 Periplasmic

AAX88216.1 putative L-lactate permease 1.96 1.68 Cyto. Memb.

AAX87899.1 heme-binding protein A, HbpA 1.73 Periplasmic

AAX87717.1 glycerol-3-phosphate transporter, GlpT 1.50 Cyto. Memb.

AAX87322.1 heme/hemopexin-binding protein B, HxuB 1.45 OMP

AAX88215.1 heme utilization protein, Hup 1.37 OMP

AAX88590.1 spermidine/putrescine transport ATP-binding protein, PotA 1.34 Cyto. Memb.
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control protein ArcA showed the highest level of downreg-
ulation in the biofilm and the NAD nucleotidase protein
and the heme-binding protein A showed the highest levels
of upregulation in the biofilm.

Discussion
In the current study, heavy-labeled isoleucine was meta-
bolically incorporated into the biofilm of the isoleucine
auxotroph, H. influenzae. Unlabeled planktonic organisms
were mixed with those from the heavy-labeled biofilm cul-
tures, three protein extracts were generated, digested with

trypsin and analyzed by ESI-MS/MS. Database searches
showed that a number of proteins had differential expres-
sion in the biofilm versus planktonic samples. A select
group of these proteins was further evaluated by SRM-MS
to verify our initial findings. The work presented here is
the first quantitative comparison between the proteomes
of H. influenzae biofilm and planktonic organisms using
SILAC metabolic labeling. While there have been some
previous proteomic studies of H. influenzae, these were
limited to the identification of proteins in the extracellular
matrix of biofilm populations (42) or to bacteria grown in

Table 1 Proteins Predicted to be up- or downregulated, by Protein Pilot, with p values ≤ 0.05 (Continued)

AAX87417.1 putative periplasmic chelated iron binding protein, HfeA 1.31 Periplasmic

AAX88729.1 predicted regulator of cell morphogenesis and NO signaling 0.77 0.39 Cytoplasmic

AAX88749.1 molybdate-binding periplasmic protein, ModA 0.46 0.69 Periplasmic

AAX87869.1 D-galactose-binding periplasmic protein precursor, MglB 0.64 0.59 Periplasmic

AAX88127.1 periplasmic oligopeptide-binding protein, OppA 0.71 0.61 Periplasmic

AAX87555.1 Ribose-binding periplasmic protein, RbsB 0.68 Periplasmic

AAX88552.1 phosphate-binding periplasmic protein precursor PstS 0.72 0.70 Periplasmic

AAX88551.1 ferritin like protein 1, FtnA 0.77 Cytoplasmic

AAX87184.1 high-affinity zinc uptake system protein ZnuA 0.77 Periplasmic

AAX87223.1 Na(+)-translocating NADH-quinone reductase subunit A, NqrA 0.84 Cytoplasmic
1Bolded ratios show proteins predicted to be upregulated in the biofilm. Non-bolded ratios are proteins predicted to be downregulated in the biofilm.
2Localization determined using PSORTb program. OMP = outer membrane protein, Cyto. Memb. = cytoplasmic membrane protein.

Figure 3 Plot of functional classifications of proteins predicted to be up- or downregulated in the biofilm compared to the planktonic
organisms. The functional roles of the 127 proteins were determined using the role identification tool from the J. Craig Venter Institute
Comprehensive Microbial Resource website (http://cmr.jcvi.org/cgi-bin/CMR/CmrHomePage.cgi) or the protein knowledgebase “(UniProtKB)”
from the UniProt website (http://www.uniprot.org/). The proteins plotted had quantification ratios with p values ≤ 0.05.
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human sputum [46]. In this latter study, Qu et al. identi-
fied thirty-one proteins with expression level ratios >1.5 in
the sputum samples compared to organisms grown in de-
fined media [46], many of these differentially expressed
proteins were involved in stress response, anti-oxidant re-
sponse, nutrient uptake, and adherence.
In the current study, SILAC labeling was used to com-

pare the global proteomic profiles of planktonic and bio-
film samples of H. influenzae to gain insight on how the

organism remodels its proteome for these diverse growth
conditions. This labeling strategy incorporated a heavy la-
beled amino acid metabolically into the biofilm population
and allowed us to directly differentiate between the biofilm
and planktonic proteins due to a mass shift in their corre-
sponding peptides. The ability to differentiate between the
two populations allowed the samples to be combined early
in the sample work-flow, thus reducing variability that
could arise from sample processing. Additionally, unlike
the previous studies which utilized a single biological rep-
licate (42, 43), we compared the biofilm and planktonic
proteomes of three biological replicates. Using this ap-
proach, we identified 814 unique proteins with 99% confi-
dence that had a minimum of two peptides. Of these
proteins, 127 showed variable expression between the bio-
film and planktonic samples, with 26 proteins showing a
protein abundance change of >1.5 and 39 proteins show-
ing a protein abundance change of <0.66 in at least one
biological replicate. Of the differentially expressed pro-
teins, biological replicates #1 and #3 showed good con-
cordance with 23 proteins having the same trend in both
replicates; while biological replicate #2 did not correlate as
well with the other two replicates, with 4 proteins showing
similar trends in both cases. The overall number of pro-
teins identified in biological replicate #2 (731 proteins)
corresponded well with replicates #1 and #3 (737 and 684
proteins, respectively). In addition, the bias factor, which
represents how well the mix of the labeled and unlabeled
samples are mixed, was 1.22 for biological replicate #2
compared to 0.99 and 1.02 for biological replicates #1 and
#3, respectively. The similarity in the overall number of
proteins identified and the bias factors for replicate #2
compared to replicates #1 and #3 suggest that the differ-
ences seen in these replicates are not due to sample prep-
aration. We believe the most likely explanation for the
differences in the biofilm proteomic analyses of biological
replicates #1 and #3 compared to replicate #2 is due to
phase variation of one or more genes.
Phase variation is described as a random process by

which a clonal population of microbes can present hetero-
geneous phenotypes as a result of a reversible genetic event
[47,48]. The process can involve several mechanisms, in-
cluding slipped-strand mispairing (SSM), site-specific re-
combination, and epigenetic regulation mediated by DNA
methylation [47]. SSM is a mechanism found in human
pathogens, including pathogenic Neisseria, Bordetella per-
tussis, H. influenzae, and Helicobacter pylori. The resulting
frame shift causes on-off changes in gene expression [49].
Among phase variable genes in NTHi, phase variation

can occur every 5 × 10−3 to 2 × 10−4 colony forming
units depending on the length of the polynucleotide re-
peat [49] and if this variant positively affects fitness it
can become a predominant member of the population
[50]. Thus, when single colonies are selected for in
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Figure 4 Log scale plots of the peptide ratios of the Biofilm:
Planktonic (B:P) data observed in the SRM-MS analyses. Each
dot represents the average of the B:P ratio for a distinct peptide.
The line shows the overall average of the B:P data for each protein.
Proteins whose average ratio showed downregulation in the biofilm
appear in the grey shaded space of the plot. Proteins whose average ratio
showed upregulation in the biofilm are plotted in the non-shaded area of
the graph.

Table 2 Proteins shown by SRM to be have increased or
decreased expression in the biofilm
1Access. # Protein 2B:P

AAX87080.1 cysteinyl-tRNA synthetase 0.78

AAX87923.1 aerobic respiration control protein ArcA 0.39

AAX88729.1 predicted regulator of cell morphogenesis
and NO signaling

0.74

AAX88749.1 molybdate-binding periplasmic protein 0.93

AAX87263.1 NAD nucleotidase 3.11

AAX87899.1 heme-binding protein A 1.85

AAX87912.1 glutamine synthetase 2.05

AAX87955.1 protective surface antigen D15 1.70

AAX88571.1 probable acyl carrier protein
phosphodiesterase

2.75

AAX88658.1 DNA gyrase subunit A 2.24
1Non-bold proteins were found to have decreased expression in the biofilm,
proteins shown in bold were found to have increased expression in
the biofilm.
2Average of all of the peptide ratios of the biofilm (B): planktonic (P) observed
for the designated protein.
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studies, these variants can be inadvertently selected for,
thus biasing results. The sequenced NTHi genomes have
at least 13 virulence related genes containing long nu-
cleotide repeat sequences either within the open reading
frames themselves or within promoter regions of genes
[49-51]. During transcription of these long repeat re-
gions by DNA polymerase loss or gain of a repeat unit
results in putting the gene out of frame with premature
termination of transcription [47,48]. Analysis of strain
comparison data within a NTHi strain can be compli-
cated by the fact that virulence-related phenotypes such
as LOS structure, iron uptake, fimbriae and surface pro-
teins are often subject to phase variation and these genes
are important in biofilm formation [48]. As each of 13
or more phase-variable genes in each strain switches on
and off in an independent fashion a single culture of
NTHi might consist of a mixture of hundreds of differ-
ent variants that differ in expression of a number of fac-
tors important in biofilm formation [2].
Previous studies have shown that growth within a bio-

film is highly complex, with both actively growing cells
as well as inactive cells depending on the position within
the biofilm and the overall state of the biofilm [52]. Dis-
persal of the biofilm at various time-points has also been
observed and most likely arises due to a number of fac-
tors such as nutrient depletion or the action of small
molecules [53]. Also, despite the fact that in vitro bio-
films appear to form distinct structures, evidence indi-
cates that biofilm forming organisms do not possess
comprehensive genetic programs for biofilm develop-
ment [54]. Whether the variability seen in biological rep-
licate #2 is due to the biofilm undergoing changes due
to phase variation, environmental factors or dispersal is
unknown. It is clear however, that when the proteins
that showed variable expression in any of the replicates
were categorized by function and plotted (Figure 3), a
small set of pathways seemed to show the most change.
These groups, which showed the most changes, include
proteins involved in DNA metabolism, energy metabol-
ism and protein synthesis.
Proteins involved in DNA metabolism showed a gen-

eral trend towards increased expression in the biofilm.
These proteins include the DNA mismatch repair pro-
tein MutS, a transcription-repair coupling factor, protein
A from the UvrABC system and the DNA-binding protein
HU, amongst others. All of these proteins have been im-
plicated in either DNA repair or in protection against de-
naturation under environmental stress. It has been
predicted that H. influenzae within a biofilm may be under
oxidative stress, and this could cause DNA damage. In a
microarray study comparing biofilm and planktonic cul-
tures of NTHi by Pang and co-workers, transcripts for a
number of factors involved in bacterial stress-response
were reported to be upregulated in the biofilms [55]. One

of these factors was a homolog of the DNA-binding pro-
tein associated with starvation (Dps). A dps mutant was
generated in NTHi, and this mutant showed increased
susceptibility to environmental stress and had reduced
survival within a biofilm compared to the parent strain
[55]. In a separate study, Gawnorski et al. used a genomic
approach to investigate genes important in H. influenzae
pathogenesis and also found that genes involved in DNA
repair and oxidative stress were important for virulence in
a murine pulmonary infection model [56]. In their study,
they used a methodology designated HITS for ‘high-
throughput insertion tracking by deep sequencing’. In this
approach, transposon insertion libraries were generated
and then sequenced either before or after passage in the
murine lung model; the sequence outputs from before and
after passage were then compared to determine genes im-
portant in pathogenesis. Their studies showed that the
DNA repair genes ruvA, ruvB, recR, recC, xerC and xerD
were all found to be necessary for virulence [56]. These
studies also showed that the oxidative stress response
genes pgdX and oxyR were necessary for a murine lung in-
fection. Murphy et al. showed that the anti-oxidant en-
zyme, peroxiredoxin/glutaredoxin glutathione dependent
peroxidase (PgdX), was expressed at higher levels in static
biofilms compared to planktonic cultures [57]. This study
also showed that COPD patient sera post-exacerbation
had higher PgdX levels compared to paired patient sera
pre-exacerbation [57]. The levels of PdgX were also shown
to be elevated in H. influenzae grown in a sputum culture
when compared to bacteria grown in a chemically defined
media [46]. Unlike these previous studies, significant dif-
ferences in PdgX levels of the biofilm compared to the
planktonic bacteria were not detected in our study. This
difference could be due to the growth state of our biofilm
compared to the growth state of the samples from the pre-
vious studies. It is clear, however, that both in our study
and in previous studies that the upregulation of DNA re-
pair mechanisms is important for H. influenzae to cope
with oxidative stress.
Energy metabolism and protein synthesis proteins were

generally expressed at lower levels in the H. influenzae
biofilm samples compared to the planktonic organisms.
Although there is metabolic heterogeneity within the bio-
film, reduced metabolism in bacterial biofilms is a gener-
ally accepted phenomenon [14,58]. The shift to a
stationary or dormant phase within the biofilm seems to
play an important role in antibiotic resistance [14,58,59].
For example, when Fux and colleagues evaluated
Staphylococcus aureus biofilm “clumps”, which had de-
tached from the biofilm, they found that they were highly
resistant to the antibiotic oxacillin [60]. This level of resist-
ance was similar to stationary phase planktonic organisms
grown in spent medium, suggesting a direct connection
between metabolic activity and antibiotic resistance [60].
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In a similar study, Anderl et al. showed that even though
both ampicillin and ciprofloxacin were able to penetrate a
Klebsiella pneumoniae biofilm, the organisms remained
resistant to clearing by these drugs [61]. Planktonic bac-
teria, from stationary phase, grown in media lacking car-
bon and nitrogen sources, were similarly antibiotic
resistant as the biofilm organisms [61]. When biofilm bac-
teria were dispersed into rich media they once again be-
came susceptible to antibiotics [61]. These studies, as well
as others, clearly demonstrate that reduced metabolism is
not only a necessity due to nutrient limitation conditions,
but that it is also likely a survival mechanism that allows
the biofilm to escape clearance by antimicrobials. Our
findings that both protein synthesis and metabolism de-
crease in the H. influenzae biofilm further strengthen the
importance of these survival mechanisms.
The aerobic respiration control protein ArcA was

found to be the most highly downregulated protein in
our study. Our initial screen found that the biofilm:
planktonic expression ratio of ArcA in two biological
replicates was less than 0.37. These results were further
confirmed in our SRM studies, where two peptides were
found to have an average biofilm:planktonic ratio of
0.39. H. influenzae encounters various levels of oxygen
conditions both within the host and within biofilms; there-
fore, the bacteria has devised various mechanisms to cope
with differing levels of oxygen availability. One such
mechanism is ArcA [62-64]. This protein is part of a two-
component regulatory system (ArcAB) that has been pre-
viously shown to be involved in modulating genes needed
for adaptation to changes in respiration [62-64]. ArcA is
thought to be most active under low oxygen conditions
[63,64]. In E. coli ArcAB regulate genes involved in meta-
bolic pathways, such as the TCA cycle, in response to re-
spiratory conditions [65]. Similarly, ArcA was also found
to modulate the expression level of genes involved in
metabolic pathways in H. influenzae [64]. A recent meta-
bolomics analysis of H. influenzae showed that the only
TCA cycle enzymes present in H. influenzae are malate
dehydrogenase, fumarate hydratase, succinyl CoA synthe-
tase, and α-ketoglutarate dehydrogenase [66]. Of these,
both malate dehydrogenase and fumarate hydratase were
found in our study to be downregulated in the biofilm. As
Table 1 demonstrates, a number of proteins involved in res-
piration were also shown to be decreased in expression, in-
cluding PfkA, FrdA, Fba, Eno, and PykA. Conversely, some
proteins involved in this functional group were shown to be
increased in expression, such as CitF, NsfB, Mao2, and Dld.
Biofilms are complex entities with evidence of stratified

growth within their internal structures. One reason for this
type of growth is in part due to the varying oxygen concen-
trations within a biofilm. Oxygen levels are higher near the
surface, while oxygen levels near the base of the biofilm are
most likely low. Indeed, Werner and co-workers used

oxygen electrodes to show that oxygen only penetrated ap-
proximately 50 μm into the biofilm [52]. These variations in
oxygen levels within biofilms make respiration within a bio-
film complex. Our data combined with previous studies sug-
gest that some sections of the strata function at an aerobic
level, while other sections of the biofilm operate in either
microaerophilic or anaerobic environments. Adding to this
complexity, ArcA was recently shown to regulate dps [64].
Dps has been shown to be important in dealing with oxida-
tive stress resistance [55,64]. Since ArcA seems to be most
active in low oxygen conditions, but paradoxically modulates
genes important in coping with oxidative stress, it seems
likely that ArcA and Dps may help the bacteria shift be-
tween low and high oxygen conditions.
The NAD nucleotidase protein NadN was found at higher

levels in the biofilm organisms compared to the planktonic
bacteria in all three biological replicates. SRM data further
confirmed this with an average biofilm:planktonic ratio of
3:1. This ratio was determined from 4 peptides which were
observed in all three biological replicates and one peptide
that was observed in two biological replicates. The combin-
ation of the difference between the biofilm and planktonic
levels being consistently observed amongst all three bio-
logical replicates as well as the high level of difference be-
tween NadN levels in the biofilm and planktonic conditions
suggests that this protein is crucial in H. influenzae biofilm
formation. It is known that H. influenzae lack most of the
enzymes necessary for de novo synthesis of NAD; therefore,
these bacteria have an absolute requirement for exogenous
NAD (factor V). Previous studies have demonstrated that
NadN is a periplasmic protein which functions as both an
NAD pyrophosphatase and an NMN 5’-nucleotidase, and is
necessary for growth on NAD in vitro [67,68]. Gawronski
et al. showed that nadN was crucial for H. influenzae infec-
tion in a murine lung infection model [56]. Their studies
also demonstrated the necessity of hel, which is also in-
volved in NAD utilization, in their infection model [56]. It
is clear that NAD utilization is crucial under a number of
growth conditions. The increase in NadN levels in H. influ-
enzae biofilms suggests that uptake and utilization of NAD
is important in biofilm formation and/or maintenance.
In addition to H. influenzae’s requirement of NAD for

growth, these organisms also require heme. H. influenzae
have developed a number of mechanisms for acquiring
heme from the human host including heme binding pro-
teins and heme utilization systems (for example: [69-77]).
HbpA, was originally identified as being a heme binding
protein [71,75,78], but has subsequently been asserted to
be primarily involved in glutathione acquisition [79]. The
first identification of H. influenzae HbpA was achieved
through transformation of an H. influenzae library into E.
coli followed by screening for heme binding activity [78].
Morton et al. later showed that HbpA bound various
forms of heme and hbpA mutants were unable to bind
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heme [75]. Morton and colleagues also showed that an
hbpA mutant in a H. influenzae type B strain was reduced
in its virulence in a 30 day old rat model of bacteremia
[80]. More recently, Vergauwen and colleagues demon-
strated that HbpA bound both reduced glutathione (GSH)
and oxidized glutathione (GSSG) at physiologically rele-
vant levels, while it only weakly bound hemin [79]. They
proposed that glutathione is transported across the bacter-
ial inner-membrane using an ATP-binding cassette
(ABC)-like dipeptide transporter (DppBCDF), with HbpA
as the periplasmic binding protein [79]. This group pro-
posed to change the nomenclature of this protein from
HbpA to GbpA (glutathione binding protein) [79]. In the
present study, HbpA was found to be expressed at higher
levels in the biofilm organisms compared to the plank-
tonic bacteria. The reduced form of glutathione (GSH) is
able to aid in the reduction of reactive oxygen species. If
HbpA is truly a glutathione transporter, able to transport
both GSH and GSSG, it is feasible that this protein may
be important in assisting H. influenzae biofilm organisms
with oxidative stress conditions. Conversely, if HbpA is
primarily involved in acquiring heme, this protein most
likely plays an important role in helping the biofilm organ-
isms acquire iron from the host. Whether HbpA’s primary
role is binding heme, binding glutathione, or perhaps
both, it is interesting to hypothesize that the promiscuity
of HbpA’s substrate binding may be by necessity or design
and could play an important role in H. influenzae biofilm
growth and virulence.

Conclusions
It is clear from the current study, as well as previous stud-
ies, that some common factors are important in biofilm
formation. H. influenzae within a biofilm need ways of
dealing with the various effects of oxidative stress and
damage. The ability to obtain necessary growth factors,
such as NAD and heme, are also crucial for survival. Bio-
film organisms exist in a somewhat dormant state with re-
duced energy metabolism and reduced protein synthesis.
It still remains unclear what bacterial factors, if any, regu-
late H. influenzae biofilm formation and maintenance. In
the present study, we employed a SILAC metabolic label-
ing strategy to quantitatively compare the proteomes of
the biofilm and planktonic states of NTHi. One of the
major advantages of this approach over unlabeled strat-
egies is the ability of the samples to be mixed early on in
the processing steps. The key disadvantage of a compara-
tive strategy is that it is not able to measure the absence of
a protein in one condition compared to the other condi-
tion. Future strategies for evaluating the proteomes of
these two growth conditions may be able to address this
issue. In addition, large scale proteomic approaches typic-
ally miss comparisons of peptides with post-translational
modifications (PTMs), as these peptides are usually a

small percentage of the total peptide population. With the
recent discoveries of a number of PTMs in bacteria [81], it
seems reasonable to assume that PTMs will play at least
some role in biofilm formation or maintenance. The data
presented here, coupled with future studies, should pro-
vide a good foundation for potential drug therapy targets
that could lead to more effective clearance of resistant
NTHi biofilm organisms.
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