68 research outputs found
On the Oscillating Course of d−sinψ Plots for Plastically Deformed, Cold-Rolled Ferritic and Duplex Stainless Steel Sheets
This work deals with non-linear dhkl−sin2ψ distributions, often observed in X-ray residual stress analysis of plastically deformed metals. Two different alloys were examined: duplex stainless steel EN 1.4362 with an austenite:ferrite volume ratio of 50:50 and ferritic stainless steel EN 1.4016. By means of an in situ experiment with high-energy synchrotron X-ray diffraction, the phase-specific lattice strain response under increasing tensile deformation was analysed continuously with a sampling rate of 0.5 Hz. From Debye–Scherrer rings of nine different lattice planes {hkl}, the dhkl−sin2ψ distributions were evaluated and the phase-specific stresses were calculated. For almost all lattice planes investigated, oscillating courses in the dhkl−sin2ψ distributions were observed, already occurring below the macro yield point and increasing in amplitude within the elasto-plastic region. By comparing the loaded and the unloaded state after deformation, the contribution of crystallographic texture and plastically induced intergranular strains to these oscillations could be separated. For the given material states, only a minor influence of crystallographic texture was observed. However, a strong dependence of the non-linearities on the respective lattice plane was found. In such cases, a stress evaluation according to the sin2ψ method leads to errors, which increase significantly if only a limited ψ range is considered
Determination of Temperature-Dependent Elastic Constants of Steel AISI 4140 by Use of In Situ X-ray Dilatometry Experiments
In situ dilatometry experiments using high energy synchrotron X-ray diffraction in transmission mode were carried out at the high energy material science beamline P07@PETRAIII atDESY (Deutsches Elektronen Synchrotron) for the tempering steel AISI 4140 at defined mechanical loading. The focus of this study was on the initial tempering state ( f errite) and the hardened state (martensite). Lattice strains were calculated from the 2D diffraction data for different hkl planes and from those temperature-dependent lattice plane specific diffraction elastic constants (DECs) were determined. The resulting coupling terms allow for precise stress analysis for typical hypoeutectoid steels using diffraction data during heat treatment processes, that is, for in situ diffraction studies during thermal exposure. In addition, by averaging hkl specific Young's moduli and Poisson ratios macroscopic temperature-dependent elastic constants were determined. In conclusion a novel approach for the determination of phase-specific temperature-dependent DECs was suggested using diffraction based dilatometry that provides more reliable data in comparison to conventional experimental procedures. Moreover, the averaging of lattice plane specific results from in situ diffraction analysis supply robust temperature-dependent macroscopic elastic constants for martensite and ferrite as input data for heat treatment process simulations
Phase Transformation-Induced Changes in Microstructure and Residual Stresses in Thermally Sprayed MnCoFeO4 Protective Coatings
The contribution comprises the investigation of the microstructure and residual stresses in thermally sprayed MnCoFeO (MCF) protective coatings for interconnectors of SOFC stacks, deposited on ferritic steel Crofer 22 APU via atmospheric plasma spraying (APS). The coatings are designated to prevent Cr evaporation during high operation temperature of the SOFCs. The local microstructure, pore distributions and pore shapes, phase fractions, micro-hardness, Youngs’ modulus and residual stresses through the coating thickness were characterized in as-sprayed state and compared with longtime (10-100 h) heat-treated samples (700 and 850 C). The results show that the long-term thermal aging treatment causes a successive high sintering of the coatings characterized by a reduction in pore density, by phase transformation from the metastable rock salt structure that gradually transformed to a spinel structure and by a slight relaxation of the processinduced tensile residual stresses in the coating. For SOFC application of the MCF coating, this indicates an improvement in the coatings integrity. During operation, a self-repair proceeds leading to dense and gas-proof coatings, while the mechanical properties are mainly retained
Investigation of the Effects of Low-Pressure Carburizing Process Parameters on Microstructural Evolution by Means of In Situ Synchrotron X-Ray Diffraction
In situ X-ray diffraction experiments during low-pressure carburizing processes are performed at the German Electron Synchrotron Facility, Beamline P07, in Hamburg, Germany, with a specially developed process chamber. Microstructural evolution is precisely analyzed based on diffraction data, and several process parameters are varied. The investigations focus on boost and diffusion steps in which carbon donor gas interacts with the hot steel surface and carbon atoms diffuse through the sample. An increased process temperature leads to higher carbon absorption during the boost step, especially at the early stages of the process. Regardless of process parameters, austenite saturation is reached in a few seconds. Therefore, longer boost step duration and/or a higher acetylene amount does not directly increase the carbon profile; instead, this would only increase the amount of carbides formed on the surface, which would contribute to the carbon profile by dissolution in the following steps. Therefore, shorter and a high number of boost steps are recommended for high efficiency. The cementite formation rate shows a similar trend with austenite saturation. It is very fast at the beginning and then stays almost constant. Therefore, introducing acetylene to the furnace after that point has no positive effect on the carburization
Surface- and volume-based investigation on influences of different Varestraint testing parameters and chemical compositions on solidification cracking in LTT filler metals
The subject of this study is how, and to what extent, Varestraint/Transvarestraint test results are influenced by both testing parameters and characteristics of evaluation methods. Several different high-alloyed martensitic LTT (low transformation temperature) filler materials, CrNi and CrMn type, were selected for examination due to their rather distinctive solidification cracking behaviour, which aroused interest after previous studies. First, the effects of different process parameter sets on the solidification cracking response were measured using standard approaches. Subsequently, microfocus X-ray computer tomography (μCT) scans were performed on the specimens. The results consistently show sub-surface cracking to significant yet varying extents. Different primary solidification types were found using wavelength dispersive X-ray (WDX) analysis conducted on filler metals with varying Cr/Ni equivalent ratios. This aspect is regarded as the main difference between the CrNiand CrMn-type materials in matters of cracking characteristics. Results show that when it comes to testing of modern highperformance alloys, one set of standard Varestraint testing parameters might not be equally suitable for all materials. Also, to properly accommodate different solidification types, sub-surface cracking has to be taken into account
Finite Element Modeling for the Structural Analysis of Al-Cu Laser Beam Welding
AbstractLaser beam welding of aluminum and copper (Al-Cu) materials is a cost efficient joining technology to produce e.g. connector elements for battery modules. Distortion low connections can be achieved, which have electrical favorable properties. Numerical simulation of the laser beam welding process of Al-Cu dissimilar materials can provide further insight into principal process mechanisms and mechanical response of the joint parts. In this paper a methodology is introduced to investigate the structural behavior of Al-Cu joints in overlap joint with respect to welding distortions and residual stresses. First the material model of the homogeneous base materials are validated. Next, a generic material model approach is used to simulate the structural behavior of heterogeneous Al-Cu connections
Residual stresses in deep-drawn cups made of duplex stainless steel X2CrNiN23-4 – Influence of the drawing depth
Residual stress development in deep drawing processes is investigated based on cylindrical cups made of duplex stainless steel sheet. Using a two-scale approach combining finite element modelling with a mean field homogenization scheme the macro residual stresses as well as the phase-specific micro residual stresses regarding the phases ferrite and austenite are calculated for steel X2CrNiN23‑4 for various drawing depths. The simulation approach allows for the numerical efficient prediction of the macro and phase-specific micro residual stress in every integration point of the entire component. The simulation results are validated by means of X‑ray diffraction residual stress analysis applied to a deep-drawn cup manufactured using corresponding process parameters. The results clearly indicate that the fast simulation approach is well suited for the numerical prediction of residual stresses induced by deep drawing for the two-phase duplex steel; the numerical results are in good agreement with the experimental data. Regarding the investigated process, a significant influence of the drawing depth, in particular on the evolution of the residual stress distribution in drawing direction, is observed. Considering the appropriate phase-specific strain hardening, the two-scale approach is also well suited for the prediction of phase specific residual stresses on the component level
- …