14 research outputs found

    Peritumoral immune infiltrates in primary tumours are not associated with the presence of axillary lymph node metastasis in breast cancer: a retrospective cohort study

    Get PDF
    Background. The axillary lymph nodes (ALNs) in breast cancer patients are the body regions to where tumoral cells most often first disseminate. The tumour immune response is important for breast cancer patient outcome, and some studies have evaluated its involvement in ALN metastasis development. Most studies have focused on the intratumoral immune response, but very few have evaluated the peritumoral immune response. The aim of the present article is to evaluate the immune infiltrates of the peritumoral area and their association with the presence of ALN metastases. Methods. The concentration of 11 immune markers in the peritumoral areas was studied in 149 patients diagnosed with invasive breast carcinoma of no special type (half of whom had ALN metastasis at diagnosis) using tissue microarrays, immunohistochemistry and digital image analysis procedures. The differences in the concentration of the immune response of peritumoral areas between patients diagnosed with and without metastasis in their ALNs were evaluated. A multivariate logistic regression model was developed to identify the clinical-pathological variables and the peritumoral immune markers independently associated with having or not having ALN metastases at diagnosis. Results. No statistically significant differences were found in the concentrations of the 11 immune markers between patients diagnosed with or without ALN metastases. Patients with metastases in their ALNs had a higher histological grade, more lymphovascular and perineural invasion and larger-diameter tumours. The multivariate analysis, after validation by bootstrap simulation, revealed that only tumour diameter (OR = 1.04; 95% CI [1.00-1.07]; p = 0.026), lymphovascular invasion (OR = 25.42; 95% CI [9.57-67.55]; p<0.001) and histological grades 2 (OR = 3.84; 95% CI [1.11-13.28]; p = 0.033) and 3 (OR = 5.18; 95% CI [1.40-19.17]; p = 0.014) were associated with the presence of ALN metastases at diagnosis. This study is one of the first to study the association of the peritumoral immune response with ALN metastasis. We did not find any association of peritumoral immune infiltrates with the presence of ALN metastasis. Nevertheless, this does not rule out the possibility that other peritumoral immune populations are associated with ALN metastasis. This matter needs to be examined in greater depth, broadening the types of peritumoral immune cells studied, and including new peritumoral areas, such as the germinal centres of the peritumoral tertiary lymphoid structures found in extensively infiltrated neoplastic lesions

    The Hepatic Sinusoid in Chronic Liver Disease: The Optimal Milieu for Cancer

    No full text
    The liver sinusoids are a unique type of microvascular beds. The specialized phenotype of sinusoidal cells is essential for their communication, and for the function of all hepatic cell types, including hepatocytes. Liver sinusoidal endothelial cells (LSECs) conform the inner layer of the sinusoids, which is permeable due to the fenestrae across the cytoplasm; hepatic stellate cells (HSCs) surround LSECs, regulate the vascular tone, and synthetize the extracellular matrix, and Kupffer cells (KCs) are the liver-resident macrophages. Upon injury, the harmonic equilibrium in sinusoidal communication is disrupted, leading to phenotypic alterations that may affect the function of the whole liver if the damage persists. Understanding how the specialized sinusoidal cells work in coordination with each other in healthy livers and chronic liver disease is of the utmost importance for the discovery of new therapeutic targets and the design of novel pharmacological strategies. In this manuscript, we summarize the current knowledge on the role of sinusoidal cells and their communication both in health and chronic liver diseases, and their potential pharmacologic modulation. Finally, we discuss how alterations occurring during chronic injury may contribute to the development of hepatocellular carcinoma, which is usually developed in the background of chronic liver disease

    Consumption of Cherry out of Season Changes White Adipose Tissue Gene Expression and Morphology to a Phenotype Prone to Fat Accumulation

    No full text
    The aim of this study was to determine whether the consumption of cherry out of its normal harvest photoperiod affects adipose tissue, increasing the risk of obesity. Fischer 344 rats were held over a long day (LD) or a short day (SD), fed a standard diet (STD), and treated with a cherry lyophilizate (CH) or vehicle (VH) (n = 6). Biometric measurements, serum parameters, gene expression in white (RWAT) and brown (BAT) adipose tissues, and RWAT histology were analysed. A second experiment with similar conditions was performed (n = 10) but with a cafeteria diet (CAF). In the STD experiment, Bmal1 and Cry1 were downregulated in the CHSD group compared to the VHSD group. Ppar&alpha; expression was downregulated while Ucp1 levels were higher in the BAT of the CHSD group compared to the VHSD group. In the CAF-fed rats, glucose and insulin serum levels increased, and the expression levels of lipogenesis and lipolysis genes in RWAT were downregulated, while the adipocyte area increased and the number of adipocytes diminished in the CHSD group compared to the VHSD group. In conclusion, we show that the consumption of cherry out of season influences the metabolism of adipose tissue and promotes fat accumulation when accompanied by an obesogenic diet

    Epigallocatechin Gallate Modulates Muscle Homeostasis in Type 2 Diabetes and Obesity by Targeting Energetic and Redox Pathways: A Narrative Review

    No full text
    Obesity is associated with the hypertrophy and hyperplasia of adipose tissue, affecting the healthy secretion profile of pro- and anti-inflammatory adipokines. Increased influx of fatty acids and inflammatory adipokines from adipose tissue can induce muscle oxidative stress and inflammation and negatively regulate myocyte metabolism. Muscle has emerged as an important mediator of homeostatic control through the consumption of energy substrates, as well as governing systemic signaling networks. In muscle, obesity is related to decreased glucose uptake, deregulation of lipid metabolism, and mitochondrial dysfunction. This review focuses on the effect of epigallocatechin-gallate (EGCG) on oxidative stress and inflammation, linked to the metabolic dysfunction of skeletal muscle in obesity and their underlying mechanisms. EGCG works by increasing the expression of antioxidant enzymes, by reversing the increase of reactive oxygen species (ROS) production in skeletal muscle and regulating mitochondria-involved autophagy. Moreover, EGCG increases muscle lipid oxidation and stimulates glucose uptake in insulin-resistant skeletal muscle. EGCG acts by modulating cell signaling including the NF-&#954;B, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase (MAPK) signaling pathways, and through epigenetic mechanisms such as DNA methylation and histone acetylation

    Oxidative Stress in Chronic Liver Disease and Portal Hypertension: Potential of DHA as Nutraceutical.

    Get PDF
    Chronic liver disease constitutes a growing public health issue worldwide, with no safe and effective enough treatment clinical scenarios. The present review provides an overview of the current knowledge regarding advanced chronic liver disease (ACLD), focusing on the major contributors of its pathophysiology: inflammation, oxidative stress, fibrosis and portal hypertension. We present the benefits of supplementation with docosahexaenoic acid triglycerides (TG-DHA) in other health areas as demonstrated experimentally, and explore its potential as a novel nutraceutical approach for the treatment of ACLD and portal hypertension based on published pre-clinical data

    A Mix of Natural Bioactive Compounds Reduces Fat Accumulation and Modulates Gene Expression in the Adipose Tissue of Obese Rats Fed a Cafeteria Diet

    No full text
    Scientists are focusing on bioactive ingredients to counteract obesity. We evaluated whether a mix containing grape seed proanthocyanidin extract (GSPE), anthocyanins, conjugated linoleic acid (CLA), and chicken feet hydrolysate (CFH) could reduce body fat mass and also determined which mechanisms in the white adipose tissue (WAT) and the brown adipose tissue (BAT) were affected by the treatment. The mix or vehicle (VH) were administered for three weeks to obese rats fed a cafeteria (CAF) diet. Biometric measures, indirect calorimetry, and gene expression in WAT and BAT were analyzed as was the histology of the inguinal WAT (IWAT). The individual compounds were also tested in the 3T3-L1 cell line. The mix treatment resulted in a significant 15% reduction in fat (25.01 &plusmn; 0.91 g) compared to VH treatment (21.19 &plusmn; 1.59 g), and the calorimetry results indicated a significant increase in energy expenditure and fat oxidation. We observed a significant downregulation of Fasn mRNA and an upregulation of Atgl and Hsl mRNA in adipose depots in the group treated with the mix. The IWAT showed a tendency of reduction in the number of adipocytes, although no differences in the total adipocyte area were found. GSPE and anthocyanins modulated the lipid content and downregulated the gene and protein levels of Fasn compared to the untreated group in 3T3-L1 cells. In conclusion, this mix is a promising treatment against obesity, reducing the WAT of obese rats fed a CAF diet, increasing energy expenditure and fat oxidation, and modifying the expression of genes involved in lipid metabolism of the adipose tissue

    The Immune Response in Nonmetastatic Axillary Lymph Nodes Is Associated with the Presence of Axillary Metastasis and Breast Cancer Patient Outcome.

    No full text
    Tumor cells can modify the immune response in primary tumors and in the axillary lymph nodes with metastasis (ALN+) in breast cancer (BC), influencing patient outcome. We investigated whether patterns of immune cells in the primary tumor and in the axillary lymph nodes without metastasis (ALN-) differed between patients diagnosed without ALN+ (diagnosed-ALN-) and with ALN+ (diagnosed-ALN+) and the implications for clinical outcome. Eleven immune markers were studied using immunohistochemistry, tissue microarray, and digital image analysis in 141 BC patient samples (75 diagnosed-ALN+ and 66 diagnosed-ALN-). Two logistic regression models were derived to identify the clinical, pathologic, and immunologic variables associated with the presence of ALN+ at diagnosis. There are immune patterns in the ALN- associated with the presence of ALN+ at diagnosis. The regression models revealed a small subgroup of diagnosed-ALN+ with ALN- immune patterns that were more similar to those of the ALN- of the diagnosed-ALN-. This small subgroup also showed similar clinical behavior to that of the diagnosed-ALN-. Another small subgroup of diagnosed-ALN- with ALN- immune patterns was found whose members were more similar to those of the ALN- of the diagnosed-ALN+. This small subgroup had similar clinical behavior to the diagnosed-ALN+. These data suggest that the immune response present in ALN- at diagnosis could influence the clinical outcome of BC patients
    corecore