8,726 research outputs found

    Pion Charge Exchange on Deuterium

    Full text link
    We investigate quantum corrections to a classical intranuclear cascade simulation of pion single charge exchange on the deuteron. In order to separate various effects the orders of scattering need to be distinguished and, to that end, we develop signals for each order of scattering corresponding to quasi-free conditions. Quantum corrections are evaluated for double scattering and are found to be large. Global agreement with the data is good.Comment: 30 pages, 12 figure

    Anisotropic imbibition on surfaces patterned with polygonal posts

    Full text link
    We present and interpret lattice Boltzmann simulations of thick films spreading on surfaces patterned with polygonal posts. We show that the mechanism of pinning and depinning differs with the direction of advance, and demonstrate that this leads to anisotropic spreading within a certain range of material contact angles.Comment: DSFD Proceedings 201

    The evaluation of waste tyre pulverised fuel for NOx reduction by reburning

    Get PDF
    The combustion of coal for power generation will continue to play a major role in the future, however, this must be achieved using cleaner technologies than we use at present. Scrap tyre arisings in the UK are 400,000 tonnes per year amounting to 30 million tyres and in the EU as a whole, more than 2.5 million tonnes of tyres per year are scrapped. The recent EC Waste Landfill Directive (1999) sets a deadline for the banning of whole and shredded tyres from landfill sites by 2006. Consequently, there is an urgent need to find a mass disposal route for tyres. We describe, in this paper, a novel use for tyre rubber pulverised fuel in a NOx reburning process which may have an application in power station boilers. This method of disposal could represent a way of combining waste disposal, energy recovery and pollution control within one process. A preliminary study of micronised tyre combustion was undertaken to identify the suitable size ranges for application in NOx reduction by reburning. Tests were performed in a down-fired, pulverised fuel combustor (PFC) operating at about 80 kW. Superior combustion characteristics, i.e. burnout were achieved with particle sizes less than 250 μm. A South African coal was used as the primary fuel in the reburn tests and the tyre was fed pneumatically via a separate feed system. Parameters studied, were, reburn zone stoichiometry and reburn fuel fraction. Additionally, the carbon content of the ash was carefully monitored for any effect on burnout at the fuel rich reburn stoichiometries. The NOx reductions achieved with tyres are compared with reburning with coal. NOx reductions up to 80% were achieved with tyres at half of the reburn fuel feed rate required to achieve the same reductions by coal. The results have been evaluated within the context of other studies available in the literature on NOx reburning by bituminous coal, brown coal, gas and biomass

    Pion double charge exchange on 4He

    Get PDF
    The doubly differential cross sections for the 4^4He(π+,π)4p(\pi^+,\pi^-) 4p reaction were calculated using both a two-nucleon sequential single charge exchange model and an intranuclear cascade code. Final state interactions between the two final protons which were the initial neutrons were included in both methods. At incident pion energies of 240 and 270 MeV the low-energy peak observed experimentally in the energy spectrum of the final pions can be understood only if the contribution of pion production is included. The calculated cross sections are compared with data.Comment: 25 pages, 9 figure

    Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation

    Full text link
    Among the many additive manufacturing (AM) processes for metallic materials, selective laser melting (SLM) is arguably the most versatile in terms of its potential to realize complex geometries along with tailored microstructure. However, the complexity of the SLM process, and the need for predictive relation of powder and process parameters to the part properties, demands further development of computational and experimental methods. This review addresses the fundamental physical phenomena of SLM, with a special emphasis on the associated thermal behavior. Simulation and experimental methods are discussed according to three primary categories. First, macroscopic approaches aim to answer questions at the component level and consider for example the determination of residual stresses or dimensional distortion effects prevalent in SLM. Second, mesoscopic approaches focus on the detection of defects such as excessive surface roughness, residual porosity or inclusions that occur at the mesoscopic length scale of individual powder particles. Third, microscopic approaches investigate the metallurgical microstructure evolution resulting from the high temperature gradients and extreme heating and cooling rates induced by the SLM process. Consideration of physical phenomena on all of these three length scales is mandatory to establish the understanding needed to realize high part quality in many applications, and to fully exploit the potential of SLM and related metal AM processes

    Many-Body Dynamics and Exciton Formation Studied by Time-Resolved Photoluminescence

    Full text link
    The dynamics of exciton and electron-hole plasma populations is studied via time-resolved photoluminescence after nonresonant excitation. By comparing the peak emission at the exciton resonance with the emission of the continuum, it is possible to experimentally identify regimes where the emission originates predominantly from exciton and/or plasma populations. The results are supported by a microscopic theory which allows one to extract the fraction of bright excitons as a function of time.Comment: 11 pages, 5 figure

    Wall-liquid and wall-crystal interfacial free energies via thermodynamic integration: A molecular dynamics simulation study

    Full text link
    A method is proposed to compute the interfacial free energy of a Lennard-Jones system in contact with a structured wall by molecular dynamics simulation. Both the bulk liquid and bulk face-centered-cubic crystal phase along the (111) orientation are considered. Our approach is based on a thermodynamic integration scheme where first the bulk Lennard-Jones system is reversibly transformed to a state where it interacts with a structureless flat wall. In a second step, the flat structureless wall is reversibly transformed into an atomistic wall with crystalline structure. The dependence of the interfacial free energy on various parameters such as the wall potential, the density and orientation of the wall is investigated. The conditions are indicated under which a Lennard-Jones crystal partially wets a flat wall.Comment: 15 pages, 11 figure

    Description of the fluctuating colloid-polymer interface

    Get PDF
    To describe the full spectrum of surface fluctuations of the interface between phase-separated colloid-polymer mixtures from low scattering vector q (classical capillary wave theory) to high q (bulk-like fluctuations), one must take account of the interface's bending rigidity. We find that the bending rigidity is negative and that on approach to the critical point it vanishes proportionally to the interfacial tension. Both features are in agreement with Monte Carlo simulations.Comment: 5 pages, 3 figures, 1 table. Accepted for publication in Phys. Rev. Let

    Low-energy Antiproton Interaction with Helium

    Get PDF
    An ab initio potential for the interaction of the neutral helium atom with antiprotons and protons is calculated using the Born-Oppenheimer approximation. Using this potential, the annihilation cross section for antiprotons in the energy range 0.01 microvolt to 1 eV is calculated.Comment: 13 pages, 7 figures, LaTe
    corecore