64 research outputs found

    Evaluating Isolation Behaviors by Nurses Using Mobile Computer Workstations at the Bedside.

    Get PDF
    This secondary analysis from a larger mixed methods study with a sequential explanatory design investigates the clinical challenges for nurses providing patient care, in an airborne and contact isolation room, while using a computer on wheels for medication administration in a simulated setting. Registered nurses, who regularly work in clinical care at the patient bedside, were recruited as study participants in the simulation and debriefing experience. A live volunteer acted as the standardized patient who needed assessment and intravenous pain medication. The simulation was video recorded in a typical hospital room to observe participating nurses conducting patient care in an airborne and contact isolation situation. Participants then reviewed their performance with study personnel in a formal, audio-recorded debriefing. Isolation behaviors were scored by an expert panel, and the debriefing sessions were analyzed. Considerable variation was found in behaviors related to using a computer on wheels while caring for a patient in isolation. Currently, no nursing care guidelines exist on the use of computers on wheels in an airborne and contact isolation room. Specific education is needed on nursing care processes for the proper disinfection of computers on wheels and the reduction of the potential for disease transmission from environmental contamination

    Method for investigating nursing behaviors related to isolation care.

    Get PDF
    BACKGROUND: Although an emphasis has been placed on protecting patients by improving health care worker compliance with infection control techniques, challenges associated with patient isolation do exist. To address these issues, a more consistent mechanism to evaluate specific clinical behaviors safely is needed. METHODS: The research method described in this study used a high fidelity simulation using a live standardized patient recorded by small cameras. Immediately after the simulation experience, nurses were asked to view and comment on their performance. A demographic survey and a video recorded physical evaluation provided participant description. A questionnaire component 1 month after the simulation experience offered insight into the timing of behavior change in clinical practice. RESULTS: Errors in behaviors related to donning and doffing equipment for isolation care were noted among the nurses in the study despite knowing they were being video recorded. This simulation-based approach to clinical behavior analysis provided rich data on patient care delivery. CONCLUSION: Standard educational techniques have not led to ideal compliance, and this study demonstrated the potential for using video feedback to enhance learning and ultimately reduce behaviors, which routinely increase the likelihood of disease transmission. This educational research method could be applied to many complicated clinical skills

    Clinical challenges in isolation care

    Get PDF
    OVERVIEW: In 2014, the authors published the results of a study investigating nurses\u27 use of personal protective equipment (PPE) in the care of a live simulated patient requiring contact and airborne precautions. The 24 participants were video-recorded as they donned and doffed PPE. Variations in practices that had the potential to cause contamination were noted. In this article, the authors comment on those variations, analyzing each element of proper PPE protocols and examining why the behaviors are a safety concern for the nurse and a potential risk for disease transmission in the hospital or other clinical area. The authors note that making use of reflective practice for complicated care situations such as infection control may help nurses improve decision making in isolation care

    Need for Aeromedical Evacuation High-Level Containment Transport Guidelines

    Get PDF
    Circumstances exist that call for the aeromedical evacuation high-level containment transport (AE-HLCT) of patients with highly hazardous communicable diseases. A small number of organizations maintain AE-HLCT capabilities, and little is publicly available regarding the practices. The time is ripe for the development of standards and consensus guidelines involving AE-HLCT

    Need for Aeromedical Evacuation High-Level Containment Transport Guidelines

    Get PDF
    Circumstances exist that call for the aeromedical evacuation high-level containment transport (AE-HLCT) of patients with highly hazardous communicable diseases. A small number of organizations maintain AE-HLCT capabilities, and little is publicly available regarding the practices. The time is ripe for the development of standards and consensus guidelines involving AE-HLCT

    Enabling real-time multi-messenger astrophysics discoveries with deep learning

    Get PDF
    Multi-messenger astrophysics is a fast-growing, interdisciplinary field that combines data, which vary in volume and speed of data processing, from many different instruments that probe the Universe using different cosmic messengers: electromagnetic waves, cosmic rays, gravitational waves and neutrinos. In this Expert Recommendation, we review the key challenges of real-time observations of gravitational wave sources and their electromagnetic and astroparticle counterparts, and make a number of recommendations to maximize their potential for scientific discovery. These recommendations refer to the design of scalable and computationally efficient machine learning algorithms; the cyber-infrastructure to numerically simulate astrophysical sources, and to process and interpret multi-messenger astrophysics data; the management of gravitational wave detections to trigger real-time alerts for electromagnetic and astroparticle follow-ups; a vision to harness future developments of machine learning and cyber-infrastructure resources to cope with the big-data requirements; and the need to build a community of experts to realize the goals of multi-messenger astrophysics

    Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions

    Get PDF
    Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections

    Patterns and rates of exonic de novo mutations in autism spectrum disorders

    Get PDF
    Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n= 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant and the overall rate of mutation is only modestly higher than the expected rate. In contrast, there is significantly enriched connectivity among the proteins encoded by genes harboring de novo missense or nonsense mutations, and excess connectivity to prior ASD genes of major effect, suggesting a subset of observed events are relevant to ASD risk. The small increase in rate of de novo events, when taken together with the connections among the proteins themselves and to ASD, are consistent with an important but limited role for de novo point mutations, similar to that documented for de novo copy number variants. Genetic models incorporating these data suggest that the majority of observed de novo events are unconnected to ASD, those that do confer risk are distributed across many genes and are incompletely penetrant (i.e., not necessarily causal). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5 to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favor of CHD8 and KATNAL2 as genuine autism risk factors
    • …
    corecore